Original Article

Prevalence of main quinolones and carbapenems resistance genes in clinical and veterinary Escherichia coli strains

Abstract

Background and Objectives: Antibiotics-resistant Escherichia coli strains are considered one of the most important causes of human and animal infections worldwide. The aim of current study was to detect common resistance (carbapenems and quinolones) genes by PCR.
Materials and Methods: A total of 100 E. coli strains isolated from human urinary tract infection and 20 isolated strains of aborted sheep embryos were collected. PCR was performed using specific primers to detect the resistance genes.
Results: Overall, among the quinolones resistance genes, qnrS resistance gene had the highest frequency (48%) and among carbapenem resistance genes, imp resistance gene had the highest frequency (45%). The frequency of resistance genes, IMP (28.45%), KPC (9.5%), VIM (9.15%), NDM (7.20%) were observed in clinical and veterinary strains, respectively. According to the results, 38.6% of E. coli strains had at least one from five genes of resistance to quinolones. The lowest frequency of resistance gene was related to qnrA, which was observed in only 29 (24.2%) strains.
Conclusion: Monitoring of carbapenem and quinolone resistance in pathogenic E. coli to humans and animals has an important value in revising treatment guidelines and the national public health, and plays an important role in preventing the spread of resistant strains.

1. Ghavidel M, Gholamhosseini-Moghadam T, Nourian K, Ghazvini K. Virulence factors analysis and antibiotic resistance of uropathogenic Escherichia coli isolated from patients in northeast of Iran. Iran J Microbiol 2020; 12: 223-230.
2. Ho HJ, Tan MX, Chen MI, Tan TY, Koo SH, Koong AYL, et al. Interaction between antibiotic resistance, resistance genes, and treatment response for urinary tract infections in primary care. J Clin Microbiol 2019; 57(9): e00143-19.
3. Larramendy S, Deglaire V, Dusollier P, Fournier J-P, Caillon J, Beaudeau F, et al. Risk factors of extended-spectrum beta-lactamases-producing Escherichia coli community acquired urinary tract infections: a systematic review. Infect Drug Resist 2020; 13: 3945-3955.
4. Wiedemann B, Heisig A, Heisig P. Uncomplicated urinary tract infections and antibiotic resistance—epidemiological and mechanistic aspects. Antibiotics (Basel) 2014; 3: 341-352.
5. Yousefi S, Mojtahedi A, Shenagari M. A survey of gyrA target-site mutation and qnr Genes among clinical isolates of Escherichia coli in the north of Iran. Jundishapur J Microbiol 2018; 11(9): e67293.
6. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6: 47.
7. Collineau L, Belloc C, Stärk KDC, Hémonic A, Postma M, Dewulf J, et al. Guidance on the selection of appropriate indicators for quantification of antimicrobial usage in humans and animals. Zoonoses Public Health 2017; 64: 165-184.
8. Schwarz S, Loeffler A, Kadlec K. Bacterial resistance to antimicrobial agents and its -IMPact on veterinary and human medicine. Vet Dermatol 2017; 28(1): 82-e19.
9. Lingzhi L, Haojie G, Dan G, Hongmei M, Yang L, Mengdie J, et al. The role of two-component regulatory system in β-lactam antibiotics resistance. Microbiol Res 2018; 215: 126-129.
10. Mughini-Gras L, Dorado-García A, Van Duijkeren E, Van Den Bunt G, Dierikx CM, Bonten MJM, et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health 2019; 3(8): e357-e369.
11. Bollache L, Bardet E, Depret G, Motreuil S, Neuwirth C, Moreau J, et al. Dissemination of CTX-M-producing Escherichia coli in freshwater fishes from a French watershed (Burgundy). Front Microbiol 2019; 9: 3239.
12. Zhou T-L, Chen X-J, Zhou M-M, Zhao Y-J, Luo X-H, Bao Q-Y. Prevalence of plasmid-mediated quinolone resistance in Escherichia coli isolates in Wenzhou, Southern China, 2002-2008. Jpn J Infect Dis 2011; 64: 55-57.
13. Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 2016; 6: a025320.
14. Blahna MT, Zalewski CA, Reuer J, Kahlmeter G, Foxman B, Marrs CF. The role of horizontal gene transfer in the spread of trimethoprim–sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canad. J Antimicrob Chemother 2006; 57: 666-672.
15. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 2006; 50: 2872-2874.
16. Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 2001; 45: 1515-1521.
17. Cavaco LM, Hasman H, Xia S, Aarestrup FM. Qnrd, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 2009; 53: 603-608.
18. Ghasemian A, Mohabati Mobarez A, Najar Peerayeh S, Talebi Bezmin Abadi A, Khodaparast S, Mahmood SS. Expression of adhesin genes and biofilm formation among Klebsiella oxytoca clinical isolates from patients with antibiotic-associated haemorrhagic colitis. J Med Microbiol 2019; 68: 978-985.
19. Li J, Li C, Cai X, Shi J, Feng L, Tang K, et al. Performance of modified carbapenem inactivation method and inhibitor-based combined disk test in the detection and distinguishing of carbapenemase producing Enterobacteriaceae. Ann Transl Med 2019; 7: 566.
20. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med 2020; 2020: 4674235.
21. Bodendoerfer E, Marchesi M, Imkamp F, Courvalin P, Böttger EC, Mancini S. Co-occurrence of aminoglycoside and β-lactam resistance mechanisms in aminoglycoside-non-susceptible Escherichia coli isolated in the Zurich area, Switzerland. Int J Antimicrob Agents 2020; 56: 106019.
22. Padmini N, Ajilda AAK, Sivakumar N, Selvakumar G. Extended spectrum β‐lactamase producing Escherichia coli and Klebsiella pneumoniae: critical tools for antibiotic resistance pattern. J Basic Microbiol 2017; 57: 460-470.
23. Betitra Y, Teresa V, Miguel V, Abdelaziz T. Determinants of quinolone resistance in Escherichia coli causing community-acquired urinary tract infection in Bejaia, Algeria. Asian Pac J Trop Med 2014; 7: 462-467.
24. Rezazadeh M, Baghchesaraei H, Peymani A. Plasmid-mediated quinolone-resistance (qnr) genes in clinical isolates of Escherichia coli collected from several hospitals of Qazvin and Zanjan Provinces, Iran. Osong Public Health Res Perspect 2016; 7: 307-312.
25. Sedighi I, Arabestani MR, Rahimbakhsh A, Karimitabar Z, Alikhani MY. Dissemination of extended-spectrum β-lactamases and quinolone resistance genes among clinical isolates of uropathogenic Escherichia coli in children. Jundishapur J Microbiol 2015; 8(7): e19184.
26. Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, Márquez-Díaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob 2018; 17: 34.
27. Hang BPT, Wredle E, Börjesson S, Sjaunja KS, Dicksved J, Duse A. High level of multidrug-resistant Escherichia coli in young dairy calves in southern Vietnam. Trop Anim Health Prod 2019; 51: 1405-1411.
28. Rao SP, Rama PS, Gurushanthappa V, Manipura R, Srinivasan K. Extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniaei: A multi-centric study across Karnataka. J Lab Physicians 2014; 6: 7-13.
29. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32: 1162-1171.
30. FarajzadehSheikh A, Veisi H, Shahin M, Getso M, Farahani A. Frequency of quinolone resistance genes among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains isolated from urinary tract infections. Trop Med Health 2019; 47: 19.
31. Gauthier L, Dortet L, Cotellon G, Creton E, Cuzon G, Ponties V, et al. Diversity of carbapenemase-producing Escherichia coli isolates in France in 2012-2013. Antimicrob Agents Chemother 2018; 62(8): e00266-18.
32. Nojoomi F, Ghasemian A. Resistance and virulence factor determinants of carbapenem-resistant Escherichia coli clinical isolates in three hospitals in Tehran, Iran. Infect Epidemiol Microbiol 2017; 3: 107-111.
33. Stürenburg E, Mack D. Extended-spectrum beta-lactamases: Implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 2003; 47: 273-295.
34. Ilbeigi K, Askari Badouei M, Vaezi H, Zaheri H, Aghasharif S, Kafshdouzan K. Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran. BMC Res Notes 2021; 14: 107.
Files
IssueVol 14 No 6 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v14i6.11259
Keywords
Escherichia coli; Carbapenems; Drug resistance; Polymerase chain reaction; Quinolones

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Karshenas AE, Zahraei Salehi T, Adabi M, Asghari B, Yahyaraeyat R. Prevalence of main quinolones and carbapenems resistance genes in clinical and veterinary Escherichia coli strains. Iran J Microbiol. 2022;14(6):841-849.