Articles

Minimal phenotypic test for simple differentiation of Xanthomonas campestris from other yellow-pigmented bacteria isolated from soil

Abstract

Background and Objectives: Isolation of Xanthomonas campestris from soil has a wide range of applications from monitoring of phytopathogenic populations in soil to screening of improved xanthan-producing strains. Identification of Xanthomonas campestris and its pathovars requires pathogenicity tests in addition to phenotypic and molecular characterization.
Materials and Methods: Thirty phenotypic tests were carried out on 57 yellow-pigmented bacterial isolates obtained from soil of cabbage farms after screening on Selective Xanthomonas (SX) agar and transferring on Yeast Malt agar. Absorption spectra of pigments and capability of biopolymer production were determined for the isolates. Some characteristics of the biopolymer produced and presence of a X. campestris-specific gene marker were investigated for nine putative X. campestris isolates.
Results: The present study introduces a set of simple phenotypic tests including urease, acid production from sucrose, mucoid growth on 5% sucrose, starch hydrolysis, growth in 4% NaCl, motility and utilization of asparagine as sole carbon and nitrogen source for quick and inexpensive tentative identification of Xanthomonas campestris. Validation of these tests was confirmed in 100% of the cases by characterization of bacterial exopolysaccharide as xanthan and production of genus-specific xanthomonadin pigment. Moreover, tracking of hrc gene among putative X. campestris isolates gave positive results in 80% of cases.
Conclusion: The Minimal simple phenotypic tests facilitate the screening and differentiation of putative X. campestris isolates from other false bacterial strains isolated from soil on semiselective SX agar.

Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas sp. Enzyme Microb Technol 2006; 39: 1921-1929.

Krause C. Demand for xanthan on the rise, leading prices out of the doldrums (Markets:Pharmaceuticals & Fine Chemicals). Chemical Market Reporter 2002;August 12.

Moriera AS, Vendruscolo JLS, Gil-Turnes C, Vendruscolo CT. Screening among 18 novel strains of Xanthomonas campestris pv. pruni. Food Hydrocoll 2001; 15: 469-474.

Hassler RA, Doherty DH. Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prog 1990; 6: 182-187.

López MJ, Moreno J, Ramos-Cormenzana A.Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 2001; 35: 1828-1830.

Borges CD, Vendruscolo CT. Xanthan synthesized by strains of Xanthomonas campestris pv. pruni: production, viscosity and chemical composition. Bioscience J 2007; 23: 67-73.

Gumus T, Demirci AS, Mirik M, Arici M, Aysan Y.Xanthan gum production of Xanthomonas spp. isolated from different plants. Food Sci Biotechnol 2010; 19:201-206.

Gupte MD, Kamat MY. Isolation of wild Xanthomonas strains from agricultural produce, their characterization and potential related to polysaccharide production. Folia Microbiol 1997; 42: 621-628.

Sánchez A, Ramírez ME, Torres LG, Galindo E.Characterization of xanthans from selected Xanthomonas strains cultivated under constant dissolved oxygen. World J Microbiol Biotechnol 1997; 13: 443-451.

Torrestiana B, Fucikovsky L, Galindo E. Xanthan production by some Xanthomonas isolates. Lett Appl Microbiol 1990; 10: 81-83.

Brenner DJ, Krieg NR, Staley JT (2005). Bergey’s Manual of Systematic Bacteriology, Vol .2, Part B: The Gammaproteobacteria. 2nd ed. Springer-Verlag. Berlin

Kocks CG, Ruissen MA, Zadocks JC, Duijkers MG.Survival and extinction of Xanthomonas campestris pv.campestris in soil. Eur J Plant Pathol 1998; 104: 911-923.

Mguni CM, Mortensen CN, Keswani CL, Hockenhull J. Detection of the black rot pathogen (Xanthomonas campestris pv. campestris) and other xanthomonads in Zimbabwean and imported Brassica seed. Seed Sci Technol 1999; 27: 447-454.

Schaad NW, Dianese JC. Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathol 1981; 71: 1215-1220.

López NI, Haedo AS, Méndez BS. Evaluation of Xanthomonas campestris survival in a soil microcosm system. Int Microbiol 1999; 2: 111-114.

Schaad NW, White WC. Survival of Xanthomonascampestris in soil. Phytopathol 1974; 64:1518-1520.

Jensen BD, Massomo SMS, Swai IS, Hockenhull J, Andersen SB. Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). Eur J Plant Pathol 2005; 113: 297-308.

Williams PH. Black rot: a continuing threat to world crucifers. Plant Dis 1980; 64: 736-742.

Massomo SMS, Nielsen H, Mabagala RB, Mansfeld- Giese K, Hockenhull J, Mortensen CN. Identification and characterization of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, Biolog, rep-PCR and fatty acid methyl ester analysis. Eur J Plant Pathol 2003; 109: 775-789.

Alvarez AM, Benedict AA, Mizumoto CY, Hunter JE, Gabriel DW. Serological, pathological, and genetic diversity among strains of Xanthomonas campestris infecting crucifers. Phytopathol 1994; 84: 1449-1457.

Vauterin L, Hoste B, Kersters K, Swings J.Reclassification of Xanthomonas. Int J Syst Bacteriol 1995; 45: 472-489.

Vicente JG, Conway J, Roberts SJ, Taylor JD.Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathol 2001; 91: 492-499.

Zhao Y, Damicone JP, Demezas DH, Bender CL.Bacterial leaf spot diseases of leafy crucifers in Oklahoma caused by pathovars of Xanthomonas campestris. Plant Dis 2000; 84: 1008-1014.

Berg T, Tesoriero L, Hailstones DL. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol 2005; 54: 416-427.

Park YJ, Lee BM, Ho-Hahn J, Lee GB, Park DS.Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species- specific primers based on hrpF gene sequences. Microbiol Res 2004; 159: 419-423.

Zaccardelli M, Campanile F, Spasiano A, Merighi M.Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. Eur J Plant Pathol 2007; 118: 299-306.

Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (1981). The Prokaryotes, Vol. 1. Springer Verlag. Berlin.

Rodríguez H, Aguilar L. Detection of Xanthomonas campestris mutants with increased xanthan production. J Ind Microbiol Biotechnol 1997; 18: 232-234.

Soudi MR, Ebrahimi M, Sharyat Panahi S (2006).Xanthan gum production using whey for preculture preparation. In: Modern Multidisciplinary Applied Microbiology. Ed, A Mendez-Vilas. Wiley VCH, Weiheim, pp 265-268.

García-Ochoa F, Santos VE, Casas JA, Gómez E.Xanthan gum: production, recovery, and properties.Biotechnol Adv 2000; 18: 549-579.

Schaad NW, Jones JB, Chun W (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria.3rd ed. APS Press. Minnesota.

Murofushi K, Homma T, Nakura S, Armentrout RW (1997). Process for preparation of purified xanthan gum. United States Patent 5, 595-892.

Goszczynska T, Serfontein JJ, Serfontein S (2000).Intruduction to Practical Phytobactriology, a Manual for Phytobactriology. 1st ed. Safrinet. Pretoria.

Van den Mooter M, Swings J. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol 1990; 40: 348-369.

Bobosha K (2003). Characterization of Xanthomonas campestris pv. musacearum isolates causal agent of enset bacterial wilt disease. Dissertation, Addis Ababa University.

Gomes LH, Duarte KMR, Andrino FG, Cesar F, Tavares A. A simple method for DNA isolation from Xanthomonas spp. Sci Agric 2000; 57: 553-555.37. Fusconi R, Godinho MJL. Screening for exopolysaccharide-producing bacteria from subtropical polluted groundwater. Braz J Biol 2002; 62: 363-369.

Galindo E, Salcedo G, Flores C, Ramírez M-E. Improved shake-flask test for the screening of xanthan-producing microorganisms. World J Microbiol Biotechnol 1993; 9:122-124.

Vauterin L, Swings J. Are classification and phytopathological diversity compatible in Xanthomonas? J Ind Microbiol Biotechnol 1997; 19:77-82. 40. Leela GK, Sharma G. Studies on xanthan production from Xanthomonas campestris. Bioprocess Eng 2000;23: 678-689.

Nitschke M, Rodrigues V. Effect of virulence and serial transfers of Xanthomonas campestris on xanthan gum production. Braz J Microbiol 2000; 31: 58-60.

Rottava I, Batesini G, Silva MF, Lerin L, de Oliveira D, Padilha FF, et al. Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydr Polym 2009; 77: 65-71.

Scamparini ARP, Moraes MCS. Xanthan gum production using soy protein as nitrogen nutrient. Food Biotechnol 1990; 4: 107.

Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, et al. Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 2009; 90: 119-123.

Stredansky M, Conti E. Xanthan production by solid state fermentation. Process Biochem 1999; 34: 581-587.

Files
IssueVol 3 No 2 (2011) QRcode
SectionArticles
Keywords
biochemical tests soil xanthan Xanthomonas campestris yellow-pigmented bacteria

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Soudi M, Alimadadi N, Ghadam P. Minimal phenotypic test for simple differentiation of Xanthomonas campestris from other yellow-pigmented bacteria isolated from soil. Iran J Microbiol. 1;3(2):84-91.