Cell surface proteins in S. pneumoniae, S. mitis and S. oralis
Abstract
Background and objectives: Streptococcus pneumoniae, a major human pathogen, is closely related to the commensal species S. mitis and S. oralis. S. pneumoniae surface proteins are implicated in virulence and host interaction of this species, but many of them have recently been detected in S. mitis B6 in silico. We tested for the presence of such genes usinga set of eight S. mitis and eleven S. oralis strains from different geographic locations.
Materials and Methods: An oligonucleotide microarray was designed based on the genomes of S. pneumoniae R6 and TIGR4 as well as S. mitis B6 to include 63 cell surface proteins. The S. pneumoniae genes encoding neuraminidases, hyaluronidase and pneumolysin were also included. In addition to comparative genomic hybridization experiments, homologues were identified in silico in the genome of S. oralis Uo5.
Results and Conclusions: The results document that many S. pneumoniae related surface proteins are ubiquitously present among the Mitis group of streptococci. All 19 samples hybridized with the pavA probe representing a gene important for adherence and invasion of S. pneumoniae. Only eight genes were not recognized in any strain, including the S. pneumoniae PcpC gene as the only virulence gene of the S. pneumoniae core genome.The fact that only 12 out of 26 genes present in the S. oralis Uo5 genome could be detected by microarray analysis confirms the sequence variation of surface components.
Douglas CW, Heath J, Hampton KK, Preston FE.Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol 1993; 39: 179-182.
Beighton D, Carr AD, Oppenheim BA. Identification of viridans streptococci associated with bacteraemia in neutropenic cancer patients. J Med Microbiol 1994; 40:202-204.
Brandenburg RO, Giuliani ER, Wilson WR, Geraci JE.Infective endocarditis - a 25-year overview of diagnosis and therapy. J Am Coll Cardiol 1983; 1: 280-291.
Van der Meer JTM, van Vianen W, Hu E, van Leeuwen WB, Valkenburg HA, Thompson J, Michel MF. Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of endocarditis in The Netherlands. Eur J Clin Microbiol Infect Dis 1991; 10: 728-734.
Denapaite D, Brückner R, Nuhn M, Reichmann P, Henrich B, Maurer P, Schähle Y, Selbmann P, Zimmermann W, Wambutt R, Hakenbeck R. The genome of Streptococcus mitis B6 - what is a commensal? PLoS ONE 2010; 5: e9426.
Jefferies J, Nieminen L, Kirkham LA, Johnston C, Smith A, Mitchell TJ. Identification of a secreted cholesterol- dependent cytolysin (mitilysin) from Streptococcus mitis. J Bacteriol 2007; 189: 627-632.
Neeleman C, Klaasen CH, Klomberg DN, de Valk HA, Mouton JW. Pneumolysin is a key factor in misidentification of macrolide-resistant Streptococcus pneumoniae and is a putative virulence factor of S. mitis and other streptococci. J Clin Microbiol 2004; 42:4355-4357.
Whatmore AM, Efstratiou A, Pickerill AP, Broughton K, Woodward G, Sturgeon D, George R, Dowson CG. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 2000; 68: 1374-1382.
López R, García E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 2004; 28: 553-580.
Sibold C, Henrichsen J, König A, Martin C, Chalkley L, Hakenbeck R. Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol 1994; 12: 1013-1023.
Reichmann P, König A, Liñares J, Alcaide F, Tenover FC, McDougal L, Swidsinski S, Hakenbeck R. A global gene pool for high-level cephalosporin resistance in commensal Streptococcus spp. and Streptococcus pneumoniae. J Infect Dis 1997; 176: 1001-1012.
Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol 1993;9: 635-643.
Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R.Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in S. pneumoniae, S. mitis and S. oralis. Int J Med Microbiol 2007; 297: 503-512.
King SJ, Whatmore AM, Dowson CG. NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis. J Bacteriol 2005; 187: 5376-5386.
Poulsen K, Reinholdt J, Jespergaard C, Boye K, Brown TA, Hauge M, Kilian M. A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect Immun 1998; 66: 181-190.
Hakenbeck R, Balmelle N, Weber B, Gardes C, Keck W, de Saizieu A. Mosaic genes and mosaic chromosomes: intra- and interspecies variation of Streptococcus pneumoniae. Infect Immun 2001; 69: 2477-2486.
Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, et al. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 2007; 189:8186-8195.
Bergmann S, Hammerschmidt S. Versatility of pneumococcal surface proteins. Microbiology 2006;152: 295-303.
Mitchell TJ, Paterson GK. (2007) Genetic regulation of virulence in Streptococcus pneumoniae. In: Molecular Biology of Streptococci. Eds Hakenbeck R, Chhatwal GS, Wymondham, Norfolk UK: Horizon Bioscience, pp. 205-224.
Hakenbeck R, Madhour A, Denapaite D, Brückner R.Versatility of choline metabolism and choline binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev 2009; 33: 572-586.21. Ton-That H, Marraffini LA, Schneewind O. Protein sorting to the cell wall envelope of
Gram-positive bacteria. Biochim Biophys Acta 2004; 1694: 269-278.
Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, Tuomanen EI, et al. Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 2006; 74: 4766-4777.
Takamatsu D, Bensing BA, Sullam PM. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol 2004;52: 189-203.
Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russel JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998; 95: 3140-3145.
Reichmann P, Nuhn M, Denapaite D, Brückner R, Henrich B, Maurer P, Rieger M, Klages S, Reinhard R, Hakenbeck R. Genome of Streptococcus oralis strain Uo5. J Bacteriol 2011; 193: 2888-2889.
Hakenbeck R, König A, Kern I, van der Linden M, Keck W, Billot-Klein D, Legrand R, Schoot B, Gutmann L.
Johnston C, Hinds J, Smith A, van der LM, Van EJ, Mitchell TJ. Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. J Clin Microbiol 2010; 48: 2762-2769.
Molina R, González A, Stelter M, Pérez-Dorado I, Kahn R, Morales M, Campuzano S, Campillo NE, Mobashery S, García JL, García P, Hermoso JA. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Rep 2009; 10: 246-251.
Kharat AS, Denapaite D, Gehre F, Brückner R, Vollmer W, Hakenbeck R, Tomasz A. Different pathways of choline metabolism in two choline-independent strains of Streptococcus pneumoniae and their impact on virulence. J Bacteriol 2008; 190: 5907-5914.
Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, et al. Microbiology in the post-genomic era. Nat Rev Microbiol 2008; 6: 419-430.
Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 1944; 79: 137-158.
Kilian M, Mikkelsen L, Henrichsen J. Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946),Acquisition of five high-M penicillin-binding protein Streptococcus oralis (Bridge and Sneath 1982), and variants during transfer of high-level b-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 1998; 180: 1831-1840.Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol 1989; 39: 471-484.
Files | ||
Issue | Vol 3 No 2 (2011) | |
Section | Articles | |
Keywords | ||
Streptococcus pneumoniae Streptococcus mitis Streptococcus oralis cell surface protein choline binding proteins |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |