Articles

Dissemination of Pseudomonas aeruginosa producing blaIMP-1 and blaVIM-1 in Qazvin and Alborz educational hospitals, Iran

Abstract

Background and Objectives: Pseudomonas aeruginosa is a frequent opportunistic pathogen in health care associated infections that is highly resistant to the majority of β-lactams. The aims of this study were to access the antimicrobial susceptibility pattern of P. aeruginosa isolated from educational hospitals of Qazvin and Alborz provinces, to determine the prevalence of metallo-β-lactamase (MBL) among carbapenem non-susceptible isolates by combined disk (CD) method, and to detect the blaIMP, blaVIM, blaSIM, blaGIM, blaSPM and blaNDM-1-MBL genes.
Materials and Methods: In this cross-sectional study, 300 P. aeruginosa isolates were collected from different clinical specimens in two provinces of Qazvin and Alborz hospitals, Iran. After identification of isolates by standard laboratory methods, antimicrobial susceptibility was done against 17 antibiotics according to clinical and laboratory standards institute (CLSI) guideline. CD method was carried out for detection of MBLs and the presence of blaIMP, blaVIM, blaSIM, blaGIM, blaNDM-1 and blaSPM-genes was further assessed by PCR and sequencing methods.
Results: In this study, 107 (35.66%) isolates were non-susceptible to imipenem and/or meropenem among those 56 (52.3%) isolates were metallo-β-lactamase producer. Twenty-four of 56 (42.85%) MBL-positive isolates were confirmed to be positive for MBL-encoding genes in which 14 (25%) and 10 (17.85%) isolates carried blaIMP-1 and blaVIM-1 genes either alone or in combination. Three (5.35%) isolates carried blaIMP and blaVIM genes, simultaneously.
Conclusion: Considering the moderate prevalence and clinical importance of MBL-producing isolates, rapid identification and use of appropriate infection control (IC) measures are necessary to prevent further spread of infections by these resistant organisms.

Sako S, Kariyama R, Mitsuhata R, Yamamoto M, Wada K, Ishii A, et al. Molecular epidemiology and clinical implications of metallo-β-lactamase-produc- ing Pseudomonas aeruginosa isolated from urine. Acta Med Okayama 2014;68: 89-99.

Bisbe J, Gatell JM, Puig J, Mallolas J, Martinez JA, Jimenez de Anta MT, et al. Pseudomonas aeruginosa bacteremia: univariate and multivariate analyses of factors influencing the prognosis in 133 episodes. Rev Infect Dis 1988;10: 629-635.

Walsh TR, Toleman MA, Poirel L, Nordmann P. Metal- lo-β-lactamases, the quiet before the storm? Clin Mi- crobiol Rev 2005;18: 306-25.

Bratu S, Quale J, Cebular S, Heddurshetti R, Land- man D. Multidrug resistant Pseudomonas aeruginosa in Brooklyn, New York: molecular epidemiology and in vitro activity of polymyxin B. Eur J Clin Microbiol Infect Dis 2005;24: 196-201.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, ex- tensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol In- fect 2012;18: 268-281.

Nordmann P, Poirel L. Emerging carbapenemases in gram-negative aerobes. Clin Microbial Infect 2002;8:321-31.

Lagatolla C, Tonin EA, Monti-Bragadin C, Dolzani L, Gombac F, Bearzi C, et al. Endemic carbapenem-re- sistant Pseudomonas aeruginosa with acquired metal- lo-beta-lactamase determinants in European hospital. Emerg Infect Dis 2004;10: 535-8.

Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20: 440-458.

Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289: 321-331.

Bush, K. Classification of beta-lactamases: groups 2c,2d, 2e, 3, and 4. Antimicrob Agents Chemother 1989;33:271-6.

Peleg AY, Franklin C, Bell JM, Spelmann DW. Dis- semination of the metallo-β-lactamase gene bla IMP4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 2005;41: 1549-56.

Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screen- ing metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol 2000;38: 40-43.

Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differen- tiation of metallo-β-lactamase-producing clinical iso- lates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002;40: 3798-3801.

Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Trans- ferable imipenem resistance in P. aeruginosa. Antimi- crob Agents Chemother 1991;35: 147 -51.

Mahon CR, Lehman DC, Manuselis G. Textbook of di- agnostic microbiology. 4th ed. Maryland Heights, Mo.: Saunders/Elsevier; 2011.

Clinical and Laboratory Standards Institute. Perfor- mance standards for antimicrobial susceptibility test-ing: seventeenth informational supplement M100-S23. USA: Wayne, PA; 2013.

Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. Y. PCR typing of genetic determi- nants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 2003; 41: 5407-13.

Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begov- ic J, Topisirovic L, et al. Emergence of NDM-1 metal- lo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55: 3929-31.}

]19. Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother 2011; 66: 1255-9.

Jones RN, Kirby JT, Beach ML, Biedenbach DJ, Pfaller MA. Geographic variations in activity of broad spec- trum β-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY antimicrobial surveillance program (1997–2000). Diagn Microbiol Infect Dis 2002;43: 239-243.

Saderi H, Lotfalipour H, Owlia P, Salimi H. Detec- tion of metallo-β-Lactamase producing Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Lab Medicine 2010;41: 609-12.

Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other non-fermentative gram negative bacteria. Clin Infect Dis 1998;27: S93-9.

Tavajjohi Z, Moniri R. Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital. Arch Clin Infect Dis 2011;6: 18-23.

Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad SH. Susceptibility patterns and cross-resis- tance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the south of Iran. Burns 2006;32: 343-347.

Shahcheraghi F, Nikbin VS, Feizabadi MM. Identifi- cation and genetic characterization of metallo-β-lact- amase -producing strains of Pseudomonas aeruginosa in Tehran, Iran. New Microbiol 2010;33: 243-248.

Sepehriseresht S, Boroumand MA, Pourgholi L, So- toudeh Anvari M, Habibi E, Sattarzadeh Tabrizi M. Detection of vim- and ipm-type metallo-β-lactamas- es in Pseudomonas aeruginosa clinical isolates. Arch Iran Med 2012;15: 670-673.

Khosravi AD, Mihani F. Detection of metallo betalac- tamase- producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Mi- crobiol Infect Dis 2008;60: 125-8.

Nagaveni S, Rajeshwari H, Oli AK, Patil SA, Chan- drakanth RK. Widespread emergence of multidrug resistant Pseudomonas aeruginosa isolated from CSF samples. Indian J Microbiol 2011;51: 2-7.

Ellington MJ, Kistler J, Livermore DM, Woodford N.Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemo- ther 2007;59: 321-322.

Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamase s in a large centralized laboratory. J Clin Microbiol 2005;43: 3129-35.

Peymani A, Nahaei MR, Farajnia S, Hasani A, Mir- salehian A, Sohrabi N, et al. High prevalence of metal- lo-β-lactamase -producing Acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis 2011;64: 69-71.

Sarhangi M, Motamedifar M, Sarvari J. Dissemina-tion of Pseudomonas aeruginosa Producing bla IMP1 bla VIM2 SIM1 SPM1 in Shiraz, Iran. Jundishapur J Microbiol 2013;6: e6920.

Oh EJ, Lee S, Park YJ, Park JJ, Park K, Kim SI, et al.Prevalence of metallo-beta-lactamase among Pseudo- monas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screen- ing methods for detecting metallo-β-lactamase. J Mi- crobiol Methods 2003;54:411-418.

Ryoo NH, Ha JS, Jeon DS, Kim JR. Prevalence of Metallo-β-lactamases in Imipenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter bauman- nii. Korean J Clin Microbiol 2010;13: 169-172.

Ozgumus OB, Caylan R, Tosun I, Sandalli C, Aydin K, Koksal I. Molecular epidemiology of clinical Pseu-domonas aeruginosa isolates carrying IMP-1 metal-lo-β-lactamase gene in a University Hospital in Tur-key. Microb Drug Resist 2007;13: 191-198.

Files
IssueVol 7 No 6 (2015) QRcode
SectionArticles
Keywords
Pseudomonas aeruginosa Antibiotic resistance Metallo-β-lactamase

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Peymani A, Naserpour-Farivar T, Mohammadi Ghanbarlou M, Najafipour R. Dissemination of Pseudomonas aeruginosa producing blaIMP-1 and blaVIM-1 in Qazvin and Alborz educational hospitals, Iran. Iran J Microbiol. 2016;7(6):302-309.