Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles
Abstract
Background and Objectives: Bacterial resistance to conventional antibiotics has become a widespread public health prob- lem. The aim of this study was to investigate the influence of zinc oxide nanoparticles (ZnO NPs) on the antibacterial activity of several conventional antibiotics against Pseudomonas aeruginosa.
Materials and Methods: ZnO NPs were prepared by solvothermal method and dispersed in glycerol with the help of ammo- nium citrate as a dispersant. The antibacterial effects of the resulting ZnO nanofluid, ceftazidime, tobramycin, and ciproflox- acin were investigated against two P. aeruginosa strains, including one clinical isolate and P. aeruginosa ATCC 9027 using microdilution method. For the evaluation of the combined effect of ZnO nanofluid and antibiotics, the fractional inhibitory concentration indices were calculated and isobolograms were plotted.
Results: Clinical strain in comparison to standard strain of P. aeruginosa showed more resistance to ZnO nanofluid and the antibiotics. ZnO nanofluid acted synergistically with ceftazidime and tobramycin against both strains. Combination of ZnO nanofluid and ciprofloxacin displayed synergistic and partial synergistic activity against clinical and standard strains of P. aeruginosa, respectively.
Conclusion: The results suggest that bacterial resistance to antimicrobials could be reduced by the synergistic action of ZnO NPs.
Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 1998;4:551-560.
Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001;147:2659–2669.
Dundar D, Otkun M. In-vitro efficacy of synergistic an- tibiotic combinations in multidrug resistant Pseudomo- nas aeruginosa strains. Yonsei Med J 2010;51:111-116.
Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002;95:22-26.
Durante-Mangoni E, Grammatikos A, Utili R, Falagas ME. Do we still need the aminoglycosides? Int J Anti- microb Agents 2009;33:201–205.
Jeong N, Kim JY, Park SC, Lee JK, Gopal R, Yoo S, et al. Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis. Biochem Bio- phys Res Commun 2010;399:581-586.
Park HR, Kim TH, Bark KM. Physicochemical proper- ties of quinolone antibiotics in various environments. Eur J Med Chem 2002;37:443–460.
Fish DN, Choi MK, Jung R. Synergic activity of ceph- alosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J An- timicrob Chemother 2002;50:1045–1049.
Prinsloo A, Van Straten AMS, Weldhagen GF. Anti- biotic synergy profiles of multidrug-resistant Pseudo- monas aeruginosa in a nosocomial environment. South Afr J Epidemiol Infect 2008;23:7-9.
Tin S, Sakharkar KR, Lim CS, Sakharkarm MK. Ac- tivity of chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int J Biol Sci 2009;5:153-160.
Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. Activity and interactions of antibiotic and phytochemical combinations against Pseudomo- nas aeruginosa in vitro. Int J Biol Sci 2010;6:556-568.
Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomed 2011;6:1463–1473.
Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008;279:71-76.
Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluid: green synthe- sis, characterization, and antibacterial activity. Mater Chem Phys 2010;121:198–201.
Siddique S, Shah ZH, Shahid S, Yasmin F. Prepara- tion, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov 2013;60:660-665.
Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX.Synthesis, antibacterial activity, antibacterial mech- anism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014;31:173-186.
Reddy KM, Feris K, Bell J, Hanley C, Punnoose A. Se-lective toxicity of zinc oxide nanoparticles to prokary-otic and eukaryotic systems. Appl Phys Lett 2007;90 (213902):2139021-2139023.
Yang L, Lan J, Xu Z, Chen T, Zhao T, Cheng T, et al.Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 2014;8:107-116.
Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 2009;19:842-852.
Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and influence of medium components. Environ Sci Technol 2011;45:1977-1983.
Moosavi M, Goharshadi EK, Youssefi A. Fabrication, characterization, and measurement of some physico- chemical properties of ZnO nanofluids. Int J Heat Fluid Flow 2010;31:599-605.
Pankey GA, Sabath LD. Clinical relevance of bacterio- static versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin Infect Dis 2004;38:864-870.23. Padmavathy N, Vijayaraghavan R, Enhanced bioactiv- ity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 2008;9:035004.
Raghupathi KR, Koodali RT, Manna AC, Size-depen- dent bacterial growth inhibition and mechanism of an- tibacterial activity of zinc oxide nanoparticles. Lang- muir 2011;27:4020-4028.
Cappelletty DM, Rybak MJ. Comparison of methodolo- gies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimi- crob Agents Chemother 1996;40:677-683.
den Hollander JG, Horrevorts AM, van Goor ML, Ver-brugh HA, Aouton JW. Synergism between tobramy-Press. Boca Raton, FL.
Yang L, Wang G, Tang C, Wang H, Zhang L. Synthe- sis and photoluminescence of corn-like ZnO nano- structures under solvothermal-assisted heat treatment. Chem Phys Lett 2005;409:337-341.
Ayres H, Furr J, Russell A. Effect of permeabilizers on antibiotic sensitivity of Pseudomonas aeruginosa. Lett Appl Microbiol 1999;28:13-16.
Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Bene- detti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanopar- ticles colloidal medium. Nano Lett 2006;6:866-870.
Tam KH, Djurišić AB, Chan CMN, Xi YY, Tse CW, Leung YH, et al. Antibacterial activity of ZnO na- norods prepared by a hydrothermal method. Thin Solid Films 2008;516:6167-6174.
Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shah- verdi HR, Moballegh A, et al. ZnO nanoparticles en- hanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B Appl Biomater 2010;93:557-561.
Drevenšek P, Turel I, Poklar Ulrih N. Influence of cop- per (II) and magnesium (II) ions on the ciprofloxacin binding to DNA. J Inorg Biochem 2003;96:407-415.
Xiao DR, Wang EB, An HY, Su ZM, Li YG, Gao L, et al. Rationally designed, polymeric, extended metal–ci- profloxacin complexes. Chemistry 2005;11:6673-6686.
Xiao DR, Wang EB, An HY, Li YG, Xu L. Syntheses and structures of three unprecedented metal-ciproflox- acin complexes with helical character. Cryst Growth Des 2007;7:506-512.
Drevenšek P, Ulrih NP, Majerle A, Turel I. Synthesis, characterization and DNA binding of magnesium–ci- profloxacin (cf H) complex [[Mg(cf ) ]•2.5H2O. J Inorg cin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1997;41:95-100.
Zhao L, Au JL, Wientjes MG. Comparison of meth- ods for evaluating drug-drug interaction. Front Biosci (Elite Ed.) 2010;2:241-249.
Landau S, Everitt BS (2004). A Handbook of Statistical Analyses using SPSS. Vol. 1. Chapman & Hall/CRC Biochem 2006;100:1705-1713.
Al-Mustafa J, Taha ZA. Thermodynamics of the com- plexation of ciprofloxacin with calcium and magnesium perchlorate. Thermochim Acta 2011;52:9-13.
Anacona JR, Toledo C. Synthesis and antibacterial ac- tivity of metal complexes of ciprofloxacin. Transition Met Chem (Dordrecht Neth) 2001;26:228-231.
Files | ||
Issue | Vol 8 No 2 (2016) | |
Section | Articles | |
Keywords | ||
Ceftazidime ciprofloxacin Pseudomonas aeruginosa tobramycin ZnO nanoparticles |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |