Articles

Evaluation of effluxpumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital

Abstract

Background and Objectives: Pseudomonas aeruginosa (PA) is one of the most important causes of nosocomial infections and has an intrinsic resistance to many antibiotics. Among all the resistance-nodulation-division (RND) pumps of P. aeruginosa, MexAB-OprM is the first efflux pump found to target multiple classes of antibiotics. This study was aimed to evaluate the expression level of genes expressing MexAB-OprM in clinical isolates of P. aeruginosa.
Materials and Methods: In this study, 45 P. aeruginosa strains were isolated from patients admitted to Children's Medical Center Hospital, an Iranian referral hospital. Disk diffusion and Minimum Inhibitory Concentration (MIC) methods were used for determination of the patterns of resistance to antibiotics. Real-time PCR was used to investigate the expression level of genes of MexAB-OprM efflux pump.
Results: Among 45 resistant PA isolates, the frequency of genes overexpression was as follows: MexA (n=25, 55.5%), MexB (n=24, 53.3%) and OprM (n=16, 35.5%). In addition, in 28 strains (62%) overexpression was observed in one of the studied three genes of MexAB-OprM efflux pump.
Conclusion: In our study 28 isolates (62%) had increased expression level of efflux pumps genes, MexAB-OprM. Although the efflux pumps play important roles in increasing the resistance towards different antibiotics but the role of other agents and mechanisms in evolution of resistance should not be ignored. Since the concomitant overproduction of other Mex efflux systems might have additive effects on antibiotic resistance, the co-expressing of a multicomponent efflux pump is recommended. On the other hand, the concomitant overproduction of two Mex pumps might have additive effects on resistance to antibiotic. Therefore co-expressing of Mex efflux systems is recommended.

 

Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, et al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 2004; 279: 25939-25942.

Schaible B, Taylor CT, Schaffer K. Hypoxia increas- es antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 2012; 56: 2114-2118.

Poonsuk K, Tribuddharat C, Chuanchuen R. Simul- taneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. Can J Microbiol 2014; 60: 437-443.

Yoneyama H, Maseda H, Kamiguchi H, Nakae T.Function of the membrane fusion protein, MexA, of the MexA, B-OprM efflux pump in Pseudomonas aerugi- nosa without an anchoring membrane. J Biol Chem 2000; 275: 4628-4634.

Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemo- ther 2000; 44: 3322-3327.

Choudhury D, Ghose A, Dhar Chanda D, Das Taluk- dar A, Dutta Choudhury M, Paul D, et al. Premature termination of MexR leads to overexpression of Mex- AB-OprM efflux pump in Pseudomonas aeruginosa in a tertiary referral hospital in India. PLoS One 2016; 11: e0149156.

Wu CM, Cao JL, Zheng MH, Ou Y, Zhang L, Zhu XQ, et al. Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J Int Med Res 2008; 36: 178-186.

Garcia LS, Isenberg H (2010). Clinical Microbiology Procedures Handbook. 3rd ed. ASM Press. Washing- ton DC.

Yaslianifard S, Mobarez AM, Fatolahzadeh B, Feiz-abadi MM. Colonization of hospital water systems by Legionella pneumophila, Pseudomonas aeroginosa, and Acinetobacter in ICU wards of Tehran hospitals. Indian J Pathol Microbiol 2012; 55: 352-356.

Xavier DE, Picão RC, Girardello R, Fehlberg LC, Gales AC. Efflux pumps expression and its association with porin down-regulation and beta-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol 2010; 10: 217.

Dumas JL, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomo- nas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254: 217-225.

Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbap- enem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50: 1633-1641.

Pourakbari B, Movahedi Z, Mahmoudi S, Sabouni F, Ashtiani MT, Sadeghi RH, et al. Genotypic character- istics of Pseudomonas aeruginosa strains circulating in the tertiary referral children's medical hospital in Tehran, Iran. Br J Biomed Sci 2012; 69: 169-172.

Movahedi Z, Pourakbari B, Mahmoudi S, Sabouni F, Ashtiani Haghi MT, Hosseinpour Sadeghi R, et al. Pseudomonas aeruginosa infection among cystic fi- brosis and ICU patients in the referral children medical hospital in Tehran, Iran. J Prev Med Hyg 2013; 54: 24-28.

Pourakbari B, Sadr A, Ashtiani MT, Mamishi S, De- hghani M, Mahmoudi S, et al. Five-year evaluation of the antimicrobial susceptibility patterns of bacteria causing bloodstream infections in Iran. J Infect Dev Ctries 2012; 6: 120-125.

Ghazi M, Khanbabaee G, Fallah F, Kazemi B, Mah- moudi S, Navidnia M, et al. Emergence of Pseudomo- nas aeruginosa cross-infection in children with cystic fibrosis attending an Iranian referral pediatric center. Iran J Microbiol 2012; 4: 124-129.

Alekshun MN, Levy SB. Molecular mechanisms of an- tibacterial multidrug resistance. Cell 2007; 128: 1037-1050.

Richards MJ, Edwards JR, Culver DH, Gaynes RP.Nosocomial infections in pediatric intensive care units in the United States. Pediatrics 1999; 103: e39.

Chen HY, Yuan M, Livermore DM. Mechanisms of re- sistance to beta-lactam antibiotics amongst Pseudomo- nas aeruginosa isolates collected in the UK in 1993. J Med Microbiol 1995; 43: 300-309.

Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aerugino- sa and other gram-negative bacteria. Insights from the society of infectious diseases pharmacists. Pharmaco- therapy 2003; 23: 916-924.

Vatcheva-Dobrevska R, Mulet X, Ivanov I, Zamorano L, Dobreva E, Velinov T, et al. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist 2013; 19: 355-361.

Adabi M, Talebi-Taher M, Arbabi L, Afshar M, Fathi- zadeh S, Minaeian S, et al. Spread of efflux pump over- expressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infect Chemother 2015;47: 98-104.

Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM. Expression of effulux pump MexAB-OprM and OprD of Pseudomonas aeru- ginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med 2015; 18: 102-108.

Mesaros N, Glupczynski Y, Avrain L, Caceres NE, Tulkens PM, Van Bambeke F. A combined phenotyp- ic and genotypic method for the detection of Mex ef- flux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 2007; 59: 378-386.

Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomo- nas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48: 1797-1802.

Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, et al. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Anti- microb Agents Chemother 2010; 54: 2219-2224.

Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P. In Vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999; 43: 287-291.

Aghazadeh M, Hojabri Z, Mahdian R, Nahaei MR, Rahmati M, Hojabri T, et al. Role of efflux pumps: MexAB-OprM and MexXY (-OprA), AmpC cephalo- sporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cys- tic fibrosis and burn patients. Infect Genet Evol 2014;24: 187-192.

Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000; 182: 3142-3150.

Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamo- to H, Fujiwara H, et al. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. FEMS Microbiol Lett 2005; 243: 125-131.

Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quan- titative RT-PCR. J Med Microbiol 2003; 52: 403-408.

Files
IssueVol 8 No 4 (2016) QRcode
SectionArticles
Keywords
Pseudomonas aeruginosa Efflux pump real-time-PCR

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of effluxpumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iran J Microbiol. 2016;8(4):249-256.