Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial


Background/purpose: Although habitual consumption of xylitol reduces cariogenic streptococci levels, its effect on beneficial oral streptococci is less clear. The main aim of the study is to investigate the effect of short-term xylitol consumption on the oral beneficial streptococci level of saliva, Streptococcus sanguinis and S. mitis.
Material and Methods: Twenty four volunteers with a median age of 23.7 years (range: 20-28) harboring Streptococcus mutans, S. sobrinus, S. sanguinis and S. mitis participated in the randomized, double-blind, cross-over study. The experimental chewing gum (1.5 g/pellet) contained 70% xylitol w/w while the control gum contained 63% sorbitol w/w. Saliva samples were collected before and after two three-week test periods with a four-week washout interval. Colony-forming units (CFU)/ml were enumerated for the estimation of S. mutans levels on Mitis Salivarius-Mutans valinomycin (MS-MUTV), S. sobrinus on Mitis Salivarius-Sobrinus (MS-SOB), S. sanguinis on Modified Medium 10-Sucrose (MM10-S) and S. mitis on Mitis Salivarius Agar with Tellurite (MSAT) media.
Results: The S. mutans and S. sobrinus counts of the saliva samples decreased significantly (p = 0.01 and p = 0.011, respectively) in the xylitol gum group but not in the sorbitol gum group. The salivary S. sanguinis and S. mitis counts did not decrease in both xylitol and sorbitol gum groups.
Conclusions: Based on the findings of this study, xylitol consumption reduced S. mutans and S. sobrinus counts in saliva but appeared not to effect numbers of S. sanguinis and S. mitis in saliva. So, habitual consumption of xylitol reduces cariogenic streptococci levels without any effect on beneficial sterptococci for the oral cavity.

Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50: 353-380.

Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 2005; 33: 248-255.

Fontana M, Zero DT. Assessing patients’ caries risk.Jam Dent Assoc 2006; 137: 1231-1239.

Seki M, Yamashita Y, Shibata Y, Torigoe H, Tsuda H, Maeno M. Effect of mixed mutans streptococci colonization on caries development. Oral Microbiol Immunol 2006; 21: 47-52.

Rupf S, Merte K, Eschrich K, Kneist S. Streptococcus sobrinus in children and its influence on caries activity. Eur Arch Paediatr Dent 2006; 7: 17-22.

Saravia ME, Nelson-Filho P, Ito IY, da Silva LA, da Silva RA, Emilson CG. Morphological differentiation between S. mutans and S. sobrinus on modified SB-20 culture medium. Microbiol Res 2011; 166: 63-67.

Ge Y, Caufield PW, Fisch GS, Li Y. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 2008; 42: 444-448.

van Hoogmoed CG, van Der Kuijl-Booij M, van Der Mei HC, Busscher HJ. Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant- releasing Streptococcus mitis strains. Appl Environ Microbiol 2000; 66: 659-663.

Söderling E, Hirvonen A, Karjalainen S, Fontana M, Catt D, Seppä L. The effect of xylitol on the composition of the oral flora: a pilot study. Eur J Dent 2011; 5: 24-31.

Milgrom P, Ly KA, Roberts MC, Rothen M, Mueller G, Yamaguchi DK. Mutans streptococci dose response to xylitol chewing gum. J Dent Res 2006; 85: 177-181.

Tanzer JM, Thompson A, Wen ZT, Burne RA.

Streptococcus mutans: fructose transport, xylitol resistance and virulence. J Dent Res 2006; 85: 369-373.

Mickenautsch S, Leal SC, Yengopal V, Bezerra AC, Cruvinel V. Sugar-free chewing gum and dental caries: a systematic review. J Appl Oral Sci 2007; 15: 83-88.

Tapiainen T, Kontiokari T, Sammalkivi L, Ikäheimo I, Koskela M, Uhari M. Effect of xylitol on growth of Streptococcus pneumoniae in the presence of fructose and sorbitol. Antimicrob Agents Chemother 2001; 45:166-169.

Hutchings HA, Wareham K, Baxter JN, Atherton P, Kingham JG, Duane P, Thomas L, et al. A Randomised, Cross-Over, Placebo-Controlled Study of Aloe vera in Patients with Irritable Bowel Syndrome: Effects on Patient Quality of Life. ISRN Gastroenterol. 2011:206103. Epub 2010; 11: PubMed PMID: 21991499.

Takada K, Hirasawa M. A novel selective medium for isolation of Streptococcus mutans. J Microbiol Methods 2005; 60: 189-193.

Hirasawa M, Takada K. Susceptibility of Streptococcus mutans and Streptococcus sobrinus to cell wall inhibitors and development of a novel selective medium for S. sobrinus. Caries Res 2002; 36: 155-160.

Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 2000; 68: 4018-4023.18. Maeda Y, Elborn JS, Parkins MD, Reihill J, Goldsmith CE, Coulter WA, et al. Population structure and characterization of viridans group streptococci (VGS) including Streptococcus pneumoniae isolated from adult patients with cystic fibrosis (CF). J Cyst Fibros 2011; 10: 133-139.

Bradshaw DJ, Marsh PD. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 1994;28: 251-256.

Vadeboncoeur C, Trahan L, Mouton C, Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res 1983; 62: 882-884.

Miyasawa-Hori H, Aizawa S, Takahashi N. Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 2006; 21: 201-205.

Söderling EM, Hietala-Lenkkeri AM. Xylitol and erythritol decrease adherence of polysaccharide- producing oral streptococci. Curr Microbiol 2010; 60:25-29.

Trahan L, Bareil M, Gauthier L, Vadeboncoeur C.Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res 1985; 19: 53-63.

Sahni PS, Gillespie MJ, Botto RW, Otsuka AS. In vitro testing of xylitol as an anticariogenic agent. Gen Dent 2002; 50: 340-343.

Saier MH Jr, Ye JJ, Klinke S, Nino E. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J Bacteriol 1996; 178: 314-316.

Kaplan H, Hutkins RW. Fermentation of fructooligo- saccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 2000; 66: 2682-2684.

Helanto M, Aarnikunnas J, Palva A, Leisola M, Nyyssöla A. Characterization of genes involved in fructose utilization by Lactobacillus fermentum. Arch Microbiol 2006; 186: 51-59.

Loesche WJ, Grossman NS, Earnest R, Corpron R. The effect of chewing xylitol gum on the plaque and saliva levels of Streptococcus mutans. J Am Dent Assoc 1984;108: 587-592.

Mäkinen KK, Alanen P, Isokangas P, Isotupa K, Söderling E, Mäkinen PL, et al. Thirty-nine-month xylitol chewing-gum programme in initially 8-year-old school children: a feasibility study focusing on mutans streptococci and lactobacilli. Int Dent J 2008; 58: 41-50.

Söderling EM. Xylitol, mutans streptococci, and dental plaque. Adv Dent Res 2009; 21: 74-78.

Kontiokari T, Uhari M, Koskela M. Effect on xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 1995; 39: 1820-1823.

Wennerholm K, Arends J, Birkhed D, Ruben J, Emilson CG, Dijkman AG. Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque pH and mineral loss of enamel. Caries Res 1994; 28: 48-54.

Edgar WM. Sugar substitutes chewing gum and dental caries-a review. Br Dent J 1998; 184: 29-32.

IssueVol 4 No 2 (2012) QRcode
Cariogenic agents Chewing gum Sorbitol Streptococcus Xylitol

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Bahador A, Lesan S, Kashi N. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol. 1;4(2):75-81.