Original Article

Evaluation of fosfomycin susceptibility using CLSI vs EUCAST criteria among multi drug resistant uropathogens in a tertiary care Hospital

Abstract

Background and Objectives: Urinary Tract Infections (UTIs) are most frequently caused by uropathogenic Escherichia coli, which accounts for approximately 80% of the cases. Other causative agents include Klebsiella spp., Proteus spp., Enterobacter spp., Enterococcus spp., and Staphylococcus saprophyticus. The main objectives of the study were to estimate the in vitro antimicrobial activity of fosfomycin against multidrug-resistant uropathogens (MDR) isolated from patients with suspected UTI using CLSI and EUCAST criteria and to describe the antimicrobial susceptibility pattern of uropathogens isolated during the study.
Materials and Methods: This was a descriptive study in which a total of 900 urine samples were collected from patients presenting with physician-assessed signs and symptoms suggestive of a UTI. Only samples exhibiting significant bacteriuria that were also multidrug-resistant (MDR) were included. Although fosfomycin disk diffusion criteria, according to CLSI and EUCAST, are only validated for E. coli, susceptibility among other Gram-negative bacteria was also interpreted using the same criteria. This represents a major limitation of the study.
Results: In the study, 251 samples grew multi drug resistant organisms. Only 57% of the Gram-negative isolates were sensitive according to EUCAST guidelines, while 87.6% of all isolates were sensitive by CLSI criteria. Among the 161 carbapenem-resistant isolates, 135 (83.9%) were fosfomycin-susceptible and 18 (11.2%) were resistant according to CLSI. In contrast, by EUCAST criteria, only 40 (24.9%) isolates were fosfomycin-susceptible, and the remaining 121 (75.1%) were resistant.
Conclusion: Our study showed that using fosfomycin disc diffusion criteria of E. coli for other organisms is not ideal; therefore, performing an alternative form of susceptibility testing for non-E. coli isolates is recommended. Continuous monitoring of fosfomycin susceptibility is warranted to detect any emerging resistance and to guide its clinical application.

1. Worku S, Derbie A, Sinishaw MA, Adem Y, Biadglegne F. Prevalence of bacteriuria and antimicrobial susceptibility patterns among diabetic and nondiabetic patients attending at Debre Tabor Hospital, Northwest Ethiopia. Int J Microbiol 2017; 5809494.
2. Najar MS, Saldanha CL, Banday KA. Approach to urinary tract infections. Indian J Nephrol 2009; 19: 129-139.
3. Malik S, Sidhu PK, Rana JS, Nehra K. Managing urinary tract infections through phage therapy: A novel approach. Folia Microbiol (Praha) 2020; 65: 217-231.
4. Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). Br J Biomed Sci 2023; 80: 11387.
5. Sardar A, Basireddy SR, Navaz A, Singh M, Kabra V. Comparative evaluation of fosfomycin activity with other antimicrobial agents against E. coli isolates from urinary tract infections. J Clin Diagn Res 2017; 11: DC26‑9.
6. Ou LB, Nadeau L. Fosfomycin susceptibility in multidrug‑resistant Enterobacteriaceae species and vancomycin‑resistant Enterococci urinary isolates. Can J Hosp Pharm 2017 ; 70: 368‑374.
7. Keepers TR, Gomez M, Celeri C, Krause KM, Biek D, Critchley I. Fosfomycin and comparator activity against select Enterobacteriaceae, Pseudomonas, and Enterococcus urinary tract infection isolates from the United States in 2012. Infect Dis Ther 2017 ; 6: 233‑243.
8. Habte TM, Dube S, Ismail N, Hoosen AA. Hospital and community isolates of uropathogens at a tertiary hospital in South Africa. S Afr Med J 2009; 99: 584-587.
9. Lewis DA, Gumede LYE, Van der Hoven LA, de Gita GN, de Kock EJE, de Lange T, et al. Antimicrobial susceptibility of organisms causing community-acquired urinary tract infections in Gauteng Province, South Africa. S Afr Med J 2013; 103: 377-381.
10. Keating GM. Fosfomycintrometamol: a review of its use as a singledoseoral treatment for patients with acute lower urinary tract infections and pregnant women with asymptomatic bacteriuria. Drugs 2013; 73: 1951-1966.
11. Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, KatsiariM, et al. Outcomesof critically ill intensive care unit patients treated with fosfomycin forinfections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents 2013; 43: 52-59.
12. Michalopoulos AS, Livaditis IG, Gougoutas V.The revival of fosfomycin. Int J Infect Dis 2011; 15: e732-e739.
13. Pipitone G, Di Bella S, Maraolo AE, Granata G, Gatti M, Principe L, et al. Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2023; 12: 1653.
14. Falagas ME, Kanellopoulou MD, Karageorgopoulos DE, Dimopoulos G, Rafailidis PI, Skarmoutsou ND, et al. Antimicrobial susceptibility of multidrug resistant Gram negative bacteria to fosfomycin. Eur J Clin Microbiol Infect Dis 2008; 27: 439-443.
15. Bressan A, Rodio DM, Stangherlin F, Puggioni G, Ambrosi C, Arcari G, et al. In vitro activity of fosfomycin against mucoid and non-mucoid Pseudomonas aeruginosa strains. J Glob Antimicrob Resist 2020; 20: 328-331.
16. Shrestha NK, Chua JD, Tuohy MJ, Wilson DA, Procop GW, Longworth DL, et al. Antimicrobial susceptibility of vancomycin resistant Enterococcus faecium: potential utility of fosfomycin. Scand J Infect Dis 2003; 35: 12-14.
17. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011; 52(5): e103-e120.
18. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev 2016; 29: 321-347.
19. Clinical and Laboratory Standards Institute (2024). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed. Available online: www.clsi.org (accessed on 20 September 2024).
20. European Committee on Antimicrobial Susceptibility Testing (2024). Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, valid from 2024-01-01. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf
21. Piñeiro Pérez R, Cilleruelo Ortega MJ, Ares Álvarez J, Baquero-Artigao F, Silva Rico JC, Velasco Zúñiga R, et al. Recommendations on the diagnosis and treatment of urinary tract infection. AnPediatr (Engl Ed) 2019; 90(6): 400.e1-400.e9.
22. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-281.
23. Maraki S, Samonis G, Rafailidis PI, Vouloumanou EK, Mavromanolakis E, Falagas ME. Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob Agents Chemother 2009; 53: 4508-4510.
24. Sabharwal ER, Sharma R. Fosfomycin: An alternative therapy for the treatment of UTIs amidst escalating antimicrobial resistance. J Clin Diagn Res 2015; 9: 6-9.
25. Patel B, Patel K, Shetty A, Soman R, Rodrigues C. Fosfomycin Susceptibility in Urinary Tract Enterobacteriaceae. J Assoc Physicians India 2017; 65:14-16.
26. Kaase M, Szabados F, Anders A, GatermannSG. Fosfomycin susceptibility in Carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol 2014; 52: 1893-1897.
27. Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E, Samonis G. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 2010; 35: 240-243.
28. Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 2011; 37: 415-419.
29. Endimiani A, Patel G, Hujer KM, Swaminathan M, Perez F, Rice LB, et al. In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother 2010; 54: 526-529.
30. Banerjee S, Sengupta M, Sarker TK. Fosfomycin susceptibility among multidrug-resistant, extended-spectrum beta lactamase-producing, carbapenem-resistant uropathogens. Indian J Urol 2017; 33: 149-154.
31. Amladi AU, Abirami B, Devi SM, Sudarsanam TD, Kandasamy S, Kekre N, et al. Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. Indian J Med Res 2019; 149: 185-191.
32. Pogue JM, Marchaim D, Abreu-Lanfranco O, Sunkara B, Mynatt RP, Zhao JJ, et al. Fosfomycin activity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008-10. J Antibiot 2013; 66: 625-627.
Files
IssueVol 18 No 1 (2026) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v18i1.20908
Keywords
Breakpoints Discrepancy Uropathogens Infection Susceptibility

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sachu A, David A. Evaluation of fosfomycin susceptibility using CLSI vs EUCAST criteria among multi drug resistant uropathogens in a tertiary care Hospital. Iran J Microbiol. 2026;18(1):67-73.