Prevalence of exoA, cepA, plcH, lasB, and algD virulence genes in clinical isolates of Pseudomonas aeruginosa from hospitals in Yasuj and Shiraz, Iran
Abstract
Background and Objectives: Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, is ubiquitous and represents one of the most challenging multidrug-resistant pathogens today. This multicenter study aimed to evaluate antibiotic resistance patterns, detect the cepA antibiotic resistance gene, and identify virulence factor genes (exoA, algD, lasB, and plcH) in clinical isolates of P. aeruginosa.
Materials and Methods: This experimental study analyzed 74 P. aeruginosa isolates obtained from clinical samples at Imam Sajad (Yasuj) and Namazi (Shiraz) hospitals, including 74 clinical isolates and one standard reference strain. Bacterial identification was performed using standard biochemical tests. Antibiotic susceptibility was assessed by the disk diffusion method according to CLSI 2018 guidelines. Genomic DNA was extracted by means of boiling method, and PCR assays were applied to detect exoA, cepA, plcH, lasB, and algD genes. Data were analyzed with chi-square tests, considering p<0.05 as statistically significant.
Results: Among 74 P. aeruginosa isolates, all carried the exoA gene, while algD, plcH, cepA, and lasB were detected in 95.6%, 94.6%, 93.2%, and 91.9% of isolates, respectively. High resistance was observed to aztreonam and ticarcillin, while cefiderocol showed the greatest sensitivity. A significant correlation was found between the cepA gene and antibiotic resistance (P = 0.03).
Conclusion: This study reveals a high prevalence of virulence genes and increasing antibiotic resistance among P. aeruginosa clinical isolates, highlighting the urgent need for effective therapeutic strategies to combat this pathogen.
2. Ramsey DM, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 2005; 56: 309-322.
3. Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, et al. Phospholipase C: underrated players in microbial infections. Front Cell Infet Microbiol 2023; 13: 1089374.
4. Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, et al. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 2004; 53: 73-81.
5. Vijayakumar R, Sandle T, Al-Aboody MS, AlFonaisan MK, Alturaiki W, Mickymaray S, et al. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J Infect Public Health 2018; 11: 812-816.
6. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7: 199.
7. Rezaee MA, Pajand O, Nahaei MR, Mahdian R, Aghazadeh M, Ghojazadeh M, et al. Prevalence of Ambler class A β-lactamases and ampC expression in cephalosporin-resistant isolates of Acinetobacter baumannii. Diagn Microbiol Infect Dis 2013; 76: 330-334.
8. Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, et al. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998: 177511.
9. CLSI (2018). Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100 Wayne (PA).
10. Truşcă BS, Gheorghe-Barbu I, Manea M, Ianculescu E, Barbu IC, Măruțescu LG, et al. Snapshot of phenotypic and molecular virulence and resistance profiles in multidrug-resistant strains isolated in a tertiary hospital in Romania. Pathogens 2023; 12: 609.
11. El-sayed H, Fahmy Y. Correlation between biofilm formation and multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Microb Infect Dis 2021; 2: 541-549.
12. Dorri K, Modarresi F, Shakibaie M, Moazamian E. Frequency of Gene-Producing Strains (aprA, rhlI, rhlR, algD) in clinical isolates of Pseudomonas aeruginosa, isolated from hospitals of south Fars. Pars J Med Sci 2022; 20: 39-47.
13. Gholami S, Tabatabaei M, Sohrabi N. Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Microb Pathog 2017; 109: 94-98.
14. Roshani-Asl P, Rashidi N, Shokoohizadeh L, Zarei J. Relationship among antibiotic resistance, biofilm formation and lasB gene in Pseudomonas aeruginosa isolated from burn patients. Clin Lab 2018; 64: 1477-1484.
15. Mapipa Q, Digban TO, Nnolim NE, Nwodo UU. Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci Rep 2021; 11: 11800.
16. Namaki M, Habibzadeh S, Vaez H, Arzanlou M, Safarirad S, Bazghandi SA, et al. Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Mol Biol Rep 2022; 49: 2149-2155.
17. Mendes ET, Ranzani OT, Marchi AP, Silva MTD, Filho JUA, Alves T, et al. Chlorhexidine bathing for the prevention of colonization and infection with multidrug-resistant microorganisms in a hematopoietic stem cell transplantation unit over a 9-year period: Impact on chlorhexidine susceptibility. Medicine (Baltimore) 2016; 95(46): e5271.
18. Bazghandi SA, Arzanlou M, Peeridogaheh H, Vaez H, Sahebkar A, Khademi F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J Microbiol 2021; 14(8): e118452.
19. Jahromi SIP, Mardaneh J, Sharifi A, Pezeshkpour V, Behzad-Behbahani A, Seyyedi N, et al. Occurrence of a multidrug resistant Pseudomonas aeruginosa strains in hospitalized patients in southwest of Iran: Characterization of resistance trends and virulence determinants. Jundishapur J Microbiol 2018; 11(4): 57341.
20. Ali MM, Mansoor R, Zahra QA, Liangliang L, Gangguo W, Ali R, et al. Frequency and antimicrobial susceptibility pattern of Pseudomonas aeruginosa in human pus samples at holy family hospital Rawalpindi. Open Access J Microbiol Biotechnol 2021; 6: 000189.
21. Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, et al. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog 2021; 153: 104789.
22. Gill MK, Khanna A. Antibiogram of Pseudomonas aeruginosa isolated from infected wounds. Int J Med Microbiol Trop Dis 2019; 5: 163-165.
23. Sharifi H, Pouladfar G, Shakibaie MR, Pourabbas B, Mardaneh J, Mansouri S. Prevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran. Iran J Basic Med Sci 2019; 22: 806-812.
24. Okafor JU, Nwodo UU. Antibiogram profile and detection of resistance genes in Pseudomonas aeruginosa recovered from hospital wastewater effluent. Antibiotics (Basel) 2023; 12: 1517.
25. Rahimzadeh Torabi L, Doudi M, Golshani Z. The frequency of blaIMP and blaVIM carbapenemase genes in clinical isolates of Pseudomonas aeruginosa in isfahan medical centers. Med J Mashhad Uni Med Sci 2016; 59: 139-147.
26. Reddy SG, Bilolikar AK, Kakarla PL, Udayasree B. Prevalence and antibiogram of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care ICU setting. J Med Sci Res 2018; 6: 44-48.
27. Shah SHA, Ali W, Shah FA, Falah SF, Rehman E, Umar A, et al. Multi drug resistance Pseudomonas aeruginosa frequency and antibiogram in A tertiary teaching care hospital in Pakistan. Pak J Med Sci 2022; 5: 231-235.
28. Rustini R, Jamsari J, Marlina M, Zubir N, Yuliandra Y. Antibacterial resistance pattern of Pseudomonas aeruginosa isolated from clinical samples at a general hospital in padang, west sumatra, indonesia. Asian J Pharm Clin Res 2017; 10: 158-160.
29. Sodani S, Hawaldar R. Study of the antibiotic sensitivity pattern of Pseudomonas aeruginosa and its mechanism of resistance. Indian J Microbiol Res 2016; 3: 472-478.
30. Satlin MJ, Simner PJ, Slover CM, Yamano Y, Nagata TD, Portsmouth S. Cefiderocol treatment for patients with multidrug-and carbapenem-resistant Pseudomonas aeruginosa infections in the compassionate use program. Antimicrob Agents Chemother 2023; 67(7): e0019423.
31. Weber C, Schultze T, Göttig S, Kessel J, Schröder A, Tietgen M, et al. Antimicrobial activity of ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol against multidrug-resistant Pseudomonas aeruginosa recovered at a German university hospital. Microbiol Spectr 2022; 10(5): e0169722.
32. Marner M, Kolberg L, Horst J, Böhringer N, Hübner J, Kresna IDM, et al. Antimicrobial activity of ceftazidime-avibactam, ceftolozane-tazobactam, cefiderocol, and novel darobactin analogs against multidrug-resistant Pseudomonas aeruginosa isolates from pediatric and adolescent cystic fibrosis patients. Microbiol Spectr 2023; 11(1): e0443722.
| Files | ||
| Issue | Vol 17 No 6 (2025) | |
| Section | Original Article(s) | |
| DOI | https://doi.org/10.18502/ijm.v17i6.20363 | |
| Keywords | ||
| Antibiotic resistance Virulence Pseudomonas aeruginosa Polymerase chain reaction | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |



