Phenotypic and genotypic characterization of carbapenemase-producing Escherichia coli clinical isolates in Thi-Qar, Iraq
Abstract
Background and Objectives: The emergence of carbapenem resistance in Escherichia coli (E. coli) poses an urgent threat. The study aims to assess carbapenem resistance and the presence of carbapenemase genes in E. coli clinical isolates from Thi-Qar Hospital, Iraq.
Materials and Methods: A total of 2203 specimens were collected from patients at two hospitals between January and October 2024. E. coli was identified via biochemical tests and confirmed with the Vitek2® system. Antibiotic sensitivity was evaluated using disc diffusion, and carbapenemase production was investigated through combined disc tests (CDT) and modified Hodge tests (MHT). PCR was used to detect carbapenemase genes.
Results: Out of 2203 specimens, 1212 (55.02%) exhibited bacterial growth, with E. coli accounting for 15.35% (186/1212) of isolates. Among these, 40 (21.51%) were resistant to at least one carbapenem. CDT identified 10, and MHT identified 1 as a carbapenemase producer. The most detected gene was blaNDM (60.00%), followed by blaOXA (40.00%) and blaOXA-48 (15.00%). blaOXA-51 and blaVIM were found in 5.00% of isolates each. No blaKPC, blaNMC, blaIMI, blaGES, blaSPM, blaGIM, or blaSIM was detected.
Conclusion: The high prevalence of carbapenem resistance and the corresponding encoding genes in E. coli in Thi-Qar province pose a concerning challenge for managing serious infections caused by this pathogen.
2. Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii. ACS Appl Mater Interfaces 2021; 13: 30434-30457.
3. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55: 4943-4960.
4. Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 2010; 36 Suppl 3: S8-S14.
5. Roussel C, Sivignon A, de Wiele TV, Blanquet-Diot S. Foodborne enterotoxigenic Escherichia coli: from gut pathogenesis to new preventive strategies involving probiotics. Future Microbiol 2017; 12: 73-93.
6. El-Shaer S, Abdel-Rhman SH, Barwa R, Hassan R. Genetic characterization of extended-spectrum β-lactamase- and carbapenemase-producing Escherichia coli isolated from Egyptian hospitals and environments. PLoS One 2021; 16(7): e0255219.
7. Tagliabue A, Rappuoli R. Changing Priorities in Vaccinology: Antibiotic resistance moving to the top. Front Immunol 2018; 9: 1068.
8. Patel JB, Rasheed JK, Kitchel B. Carbapenemases in Enterobacteriaceae: activity, epidemiology, and laboratory detection. Clin Microbiol Newsl 2009; 31: 55-62.
9. Livermore DM, Woodford N. Carbapenemases: a problem in waiting?. Curr Opin Microbiol 2000; 3: 489-495.
10. Hammoudi Halat D, Ayoub Moubareck C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9: 186.
11. Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection. J Clin Microbiol 2016; 54: 529-534.
12. MacFaddin JF (2000). Biochemical Tests for Identification of Medical Bacteria. 3rd Edition, Lippincott Williams & Wilkins, Philadelphia. https://www.scirp.org/reference/referencespapers?referenceid=1661468
13. MacFaddin JF (2000). Biochemical tests for identification of medical bacteria, 3rd ed. Lippincott Williams and Wilkins. New York. https://www.scirp.org/reference/referencespapers?referenceid=2025713
14. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 1966; 36: 49-52.
15. Clinical and Laboratory Standards Institute (2023). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed. CLSI supplement M100, Clinical and Laboratory Standards Institute, USA.
16. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002; 40: 3798-3801.
17. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7: 88-91.
18. Shanmugakani RK, Akeda Y, Sugawara Y, Laolerd W, Chaihongsa N, Sirichot S, et al. PCR-Dipstick-Oriented Surveillance and Characterization of mcr-1- and Carbapenemase-Carrying Enterobacteriaceae in a Thai Hospital. Front Microbiol 2019; 10: 149.
19. Radice M, Power P, Gutkind G, Fernández K, Vay C, Famiglietti A, et al. First class a carbapenemase isolated from Enterobacteriaceae in Argentina. Antimicrob Agents Chemother 2004; 48: 1068-1069.
20. Woodford N, Kaufmann ME, Karisik E, Hartley JW. Molecular epidemiology of multiresistant Escherichia coli isolates from community-onset urinary tract infections in Cornwall, England. J Antimicrob Chemother 2007; 59: 106-109.
21. Wang C, Cai P, Chang D, Mi Z. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase. J Antimicrob Chemother 2006; 57: 1261-1262.
22. Farzana R, Shamsuzzaman S, Mamun KZ. Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. J Infect Dev Ctries 2013; 7: 161-168.
23. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119-123.
24. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 15-22.
25. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65: 490-495.
26. Sharma S, Banerjee T, Yadav G, Kumar A. Susceptibility profile of blaOXA-23 and metallo-β-lactamases co-harbouring isolates of carbapenem resistant Acinetobacter baumannii (CRAB) against standard drugs and combinations. Front Cell Infect Microbiol 2023; 12: 1068840.
27. Kucheria R, Dasgupta P, Sacks SH, Khan MS, Sheerin NS. Urinary tract infections: new insights into a common problem. Postgrad Med J 2005; 81: 83-86.
28. Kibret M, Abera B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr Health Sci 2011; 11 Suppl 1(Suppl 1): S40-S45.
29. Atif M, AL-Rubaye DS, Al-Hraishawi HR. Plasmid profiling of extended spectrum β-lactamases producing Escherichia coli in some hospitals in Baghdad. Iraqi J Agric Sci 2023; 54: 360-368.
30. Xu J, Guo H, Li L, He F. Molecular epidemiology and genomic insights into the transmission of carbapenem-resistant NDM-producing Escherichia coli. Comput Struct Biotechnol J 2023; 21: 847-855.
31. Ibrahim ME, Bilal NE, Hamid ME. Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr Health Sci 2012; 12: 368-375.
32. Alkhudhairy MK, Alshadeedi SMJ, Mahmood SS, Al-Bustan SA, Ghasemian A. Comparison of adhesin genes expression among Klebsiella oxytoca ESBL-non-producers in planktonic and biofilm mode of growth, and imipenem sublethal exposure. Microb Pathog 2019; 134: 103558.
33. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17: 1791-1798.
34. Abdulall AK, Tawfick MM, El Manakhly AR, El Kholy A. Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. Eur J Clin Microbiol Infect Dis 2018; 37: 1647-1652.
35. Abas IJ, Al-Hamdani MA. Carbapenem resistance-determining genes among multi-drug resistant bacterial isolated from clinical samples in Basrah governorate. Eur J Biomed Pharm Sci 2017; 4: 60-72.
36. Haji SH, Aka STH, Ali FA. Prevalence and characterization of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS One 2021; 16(11): e0259005.
37. Amladi AU, Abirami B, Devi SM, Sudarsanam TD, Kandasamy S, Kekre N, et al. Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin and colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. Indian J Med Res 2019; 149: 185-191.
38. De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21: 5090.
39. Alizadeh H, Khodavandi A, Alizadeh F, Bahador N. Molecular characteristics of carbapenem-resistant Klebsiella pneumoniae isolates producing blaVIM, blaNDM, and blaIMP in Clinical Centers in Isfahan, Iran. Jundishapur J Microbiol 2021; 14(2): e114473.
40. Murugan MS, Sinha DK, Vinodh Kumar OR, Yadav AK, Pruthvishree BS, Vadhana P, et al. Epidemiology of carbapenem-resistant Escherichia coli and first report of blaVIM carbapenemases gene in calves from India. Epidemiol Infect 2019; 147: e159.
41. Zeighami H, Haghi F, Hajiahmadi F. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran. J Chemother 2015; 27: 145-151.
42. Kuskucu MA, Karakullukcu A, Ailiken M, Otlu B, Mete B, Aygun G. Investigation of carbapenem resistance and the first identification of Klebsiella pneumoniae carbapenemase (KPC) enzyme among Escherichia coli isolates in Turkey: a prospective study. Travel Med Infect Dis 2016; 14: 572-576.
43. Adam MA, Elhag WI. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect Dis 2018; 18: 668.
44. Khan E, Irfan S, Sultan BA, Nasir A, Hasan R. Dissemination and spread of New Delhi Metallo-beta-lactamase-1 Superbugs in hospital settings. J Pak Med Assoc 2016; 66: 999-1004.
45. Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob 2016; 15: 20.
46. Alsaadi LA, Al-Dulaimi AAF, Al-Taai HR. Prevalence of blaVIM, blaIMP and blaNDM genes in carbapenem resistant Pseudomonas aeruginosa isolated from different clinical infections in Diyala, Iraq. Indian J Public Health Res Dev 2020; 11: 2258-2264.
47. Vali L, Dashti AA, Jadaon MM, El-Shazly S. The emergence of plasmid mediated quinolone resistance qnrA2 in extended spectrum β-lactamase producing Klebsiella pneumoniae in the Middle East. Daru 2015; 23: 34.
48. Mathers AJ, Hazen KC, Carroll J, Yeh AJ, Cox HL, Bonomo RA, et al. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the "menace" arrives in the new world. J Clin Microbiol 2013; 51: 680-683.
49. Al Hilali SA, Almohana AM. Occurrence and molecular characterization of enteropathogenic Escherichia coli serotypes isolated from children with diarrhoea in Najaf, Iraq. Indian J Med Microbiol 2011; 29: 383-388.
50. Rezaie Keikhaie K, Moshtaghi F, Sheykhzade Asadi M, Seyed Nejad S, Bagheri G. Antimicrobial Drug Resistance in Escherichia coli from Humans, and Identification of Carbapenemase-Producing E. coli in the City of Zabol, Iran. Int J Infect 2018; 5(3): e62552.
51. Zarakolu P, Eser ÖK, Otlu B, Gürpınar Ö, Özakın C, Akalın H, et al. In-vitro activity of fosfomycin against Escherichia coli and Klebsiella pneumoniae bloodstream isolates and frequency of OXA-48, NDM, KPC, VIM, IMP types of carbapenemases in the carbapenem-resistant groups. J Chemother 2022; 34: 235-240.
52. Lee YT, Turton JF, Chen TL, Wu RC, Chang WC, Fung CP, et al. First identification of blaOXA-51-like in non-baumannii Acinetobacter spp. J Chemother 2009; 21: 514-520.
53. Ibrahim SO, Mohammed EMA, Taha SM, Yousif SM, Omer H, Omer O, et al. Incidence of Oxa23 and Oxa51 genes associated with bacterial isolated from patients with urosepsis: single centre prespective. Am J Mol Biol 2022; 12: 85-96.
54. Hamprecht A, Vehreschild JJ, Seifert H, Saleh A. Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. PLoS One 2018; 13(9): e0204157.
55. Beyrouthy R, Robin F, Delmas J, Gibold L, Dalmasso G, Dabboussi F, et al. IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of blaOXA-48 into the Escherichia coli Chromosome. Antimicrob Agents Chemother 2014; 58: 3785-3790.
Files | ||
Issue | Vol 17 No 2 (2025) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v17i2.18387 | |
Keywords | ||
Antibiotic resistance; Beta-lactam resistance; Carbapenems; Doripenem; Escherichia coli; Imipenem; Meropenem |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |