Original Article

Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran

Abstract

Background and Objectives: Increasing antimicrobial resistance among Acinetobacter baumannii (A. baumannii) strains poses a significant challenge, particularly in intensive care units (ICUs) where these bacteria are common causes of hospital infections. Biofilm production is recognized as a key mechanism contributing to this resistance. This study aims to explore the relationship between biofilm production, the presence of biofilm-associated genes, and antibiotic resistance patterns in A. baumannii isolates obtained from ICU patients.
Materials and Methods: We collected 100 A. baumannii isolates from ICU patients at Nemazee Hospital in Shiraz, Iran. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, and biofilm production potential was assessed through the tissue culture plate (TCP) method. Additionally, we investigated eleven biofilm-related genes (ompA, bap, csuE, epsA, blaper-1, bfmS, pgaB, csgA, fimH, ptk, and kpsMII) in all isolates using polymerase chain reaction (PCR). The REP-PCR technique was utilized to analyze the genetic relatedness of the isolates (Fig. 4).
Results: All isolates displayed multi-drug resistance, with the highest resistance rates observed against ceftazidime, cefotaxime, and trimethoprim/sulfamethoxazole (100%). Gentamicin and amikacin showed the lowest resistance rates at 70% and 84%, respectively. A total of 98% of the isolates were capable of biofilm production, with 32% categorized as strong biofilm producers. The most frequently detected biofilm-associated genes included csuE (99%), bfmS (98%), ompA (97%), and pgaB (89%).
Conclusion: Biofilm production significantly contributes to the prevalence of multi-drug resistant A. baumannii strains. It is essential to implement effective antimicrobial stewardship and develop innovative anti-biofilm strategies to address this global health issue.

1. Meshkat Z, Salimizand H, Amini Y, Mansury D, Zomorodi AR, Avestan Z, et al. Detection of efflux pump genes in multiresistant Acinetobacter baumannii ST2 in Iran. Acta Microbiol Immunol Hung 2021; 68: 113-120.
2. Bialvaei AZ, Kouhsari E, Salehi-Abargouei A, Amirmozafari N, Ramazanzadeh R, Ghadimi-Daresajini A, et al. Epidemiology of multidrug-resistant Acinetobacter baumannii strains in Iran: a systematic review and meta-analysis. J Chemother 2017; 29: 327-337.
3. Keikha M, Karbalaei M, Rahimi F, Abadi ATB. The prevalence of antibiotic-resistant Acinetobacter baumannii infections among the Iranian ICU patients: a systematic review and meta-analysis. Gene Rep 2023; 30: 101731.
4. Falcone M, Tiseo G, Giordano C, Leonildi A, Menichini M, Vecchione A, et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: a prospective observational study. J Antimicrob Chemother 2021; 76: 1078-1084.
5. Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis 2019; 19: 629.
6. Khoshnood S, Savari M, Abbasi Montazeri E, Farajzadeh Sheikh A. Survey on genetic diversity, biofilm formation, and detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infect Drug Resist 2020; 13: 1547-1558.
7. Gedefie A, Alemayehu E, Mohammed O, Bambo GM, Kebede SS, Kebede B. Prevalence of biofilm producing Acinetobacter baumannii clinical isolates: a systematic review and meta-analysis. PLoS One 2023; 18(11): e0287211.
8. Monfared AM, Rezaei A, Poursina F, Faghri J. Detection of genes involved in biofilm formation in MDR and XDR Acinetobacter baumannii isolated from human clinical specimens in Isfahan, Iran. Arch Clin Infect Dis 2019; 14(2): e85766.
9. Rafati Zomorodi A, Rad M, Hashemi Tabar GR, Salimizand H. Molecular typing of cephalosporin resistant serovars of Salmonella enterica from poultry and farm animals. Bulg J Vet Med 2020; 23: 178-186.
10. Shin SK, Lee Y, Kwon H, Rhee JS, Kim JK. Validation of direct boiling method for simple and efficient genomic DNA extraction and PCR‐based macroalgal species determination. J Phycol 2021; 57: 1368-1372.
11. Zomorodi AR, Mohseni N, Hafiz M, Nikoueian H, Hashemitabar G, Salimizand H, et al. Investigation of mobile colistin resistance (mcr) genes among carbapenem resistance Pseudomonas aeruginosa isolates from bovine mastitis in Mashhad, Iran. Gene Rep 2022; 29: 101695.
12. Sales AJ, Naebi S, Bannazadeh-Baghi H, Saki M. Antibiotic resistance pattern and prevalence of blaOXA-51, blaNDM, blaVIM, blaPER, blaVEB, blaCTX, tetA and tetB Genes in Acinetobacter baumannii isolated from clinical specimens of hospitals in Tabriz city, Iran. J Clin Res Paramed Sci 2021; 10(2): e118521.
13. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing.31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, USA, 2021.
14. Singh AK, Prakash P, Achra A, Singh GP, Das A, Singh RK. Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J Glob Infect Dis 2017; 9: 93-101.
15. Sobouti B, Mirshekar M, Fallah S, Tabaei A, Mehrabadi JF, Darbandi A. Pan drug-resistant Acinetobacter baumannii causing nosocomial infections among burnt children. Med J Islam Repub Iran 2020; 34: 24.
16. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes 2020; 13: 380.
17. Hazhirkamal M, Zarei O, Movahedi M, Karami P, Shokoohizadeh L, Taheri M. Molecular typing, biofilm production, and detection of carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolated from different infection sites using ERIC-PCR in Hamadan, west of Iran. BMC Pharmacol Toxicol 2021; 22: 32.
18. Lob SH, Hoban DJ, Sahm DF, Badal RE. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii. Int J Antimicrob Agents 2016; 47: 317-323.
19. Rashvand P, Peymani A, Mohammadi M, Karami AA, Samimi R, Hajian S, et al. Molecular survey of aminoglycoside-resistant Acinetobacter baumannii isolated from tertiary hospitals in Qazvin, Iran. New Microbes New Infect 2021; 42: 100883.
20. Nowak J, Zander E, Stefanik D, Higgins PG, Roca I, Vila J, et al. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 2017; 72: 3277-3282.
21. Woon JJ, Teh CSJ, Chong CW, Abdul Jabar K, Ponnampalavanar S, Idris N. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from the Intensive care unit in a tertiary teaching hospital in Malaysia. Antibiotics (Basel) 2021; 10: 1340.
22. Liu P-Y, Ko W-C, Lee W-S, Lu P-L, Chen Y-H, Cheng S-H, et al. In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018–2020. J Microbiol Immunol Infect 2022; 55: 888-895.
23. Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother 2020; 75: 271-282.
24. Karakonstantis S, Kritsotakis EI, Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48: 835-851.
25. Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019; 5(8): e02192.
26. Asadian M, Azimi L, Alinejad F, Ostadi Y, Lari AR. Molecular characterization of Acinetobacter baumannii isolated from ventilator-associated pneumonia and burn wound colonization by random amplified polymorphic DNA polymerase chain reaction and the relationship between antibiotic susceptibility and biofilm production. Adv Biomed Res 2019; 8: 58.
27. Shenkutie AM, Yao MZ, Siu GK, Wong BKC, Leung PH. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics (Basel) 2020; 9: 817.
28. Asaad AM, Ansari S, Ajlan SE, Awad SM. Epidemiology of biofilm producing Acinetobacter baumannii nosocomial isolates from a tertiary care hospital in Egypt: a cross-sectional study. Infect Drug Resist 2021; 14: 709-717.
29. Assefa M, Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: A review. Infect Drug Resist 2022; 15: 5061-5068.
30. Altınok Ö, Boral B, Ergin A, Eser ÖK. Existence of biofilm and biofilm-associated virulence genes in multi-drug resistant invasive Acinetobacter baumannii isolates. Mikrobiyol Bul 2020; 54: 40-49.
31. Yang C-H, Su P-W, Moi S-H, Chuang L-Y. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules 2019; 24: 1849.
32. Badmasti F, Siadat SD, Bouzari S, Ajdary S, Shahcheraghi F. Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings. J Med Microbiol 2015; 64: 559-564.
33. Alamri AM, Alsultan AA, Ansari MA, Alnimr AM. Biofilm-formation in clonally unrelated multidrug-resistant Acinetobacter baumannii isolates. Pathogens 2020; 9: 630.
34. Leelasupasri S, Santimaleeworagun W, Jitwasinkul T. Antimicrobial susceptibility among colistin, sulbactam, and fosfomycin and a synergism study of colistin in combination with sulbactam or fosfomycin against clinical isolates of carbapenem-resistant Acinetobacter baumannii. J Pathog 2018; 2018: 3893492.
Files
IssueVol 17 No 1 (2025) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v17i1.17804
Keywords
Acinetobacter baumannii; Antibiotic stewardship; Multi-drug resistant; Intensive care units pathogens; REP- polymerase chain reaction

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hosseinzadeh Shakib N, Hashemizadeh Z, Rafati Zomorodi A, Khashei R, Sadeghi Y, Bazargani A. Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran. Iran J Microbiol. 2025;17(1):80-91.