Genetic and phenotypic of Pseudomonas aeruginosa sensitive to meropenem antibiotics after exposure to meropenem
Abstract
Background and Objectives: Pseudomonas aeruginosa, drug-resistant, causes health infections. Resistance to the preferred therapy meropenem is a serious threat. This study aimed to analyze changes in meropenem minimum inhibitory concentration (MIC), changes in ampC, mexA, and oprD gene expression, and the correlation between MIC and ampC, mexA, and oprD gene expression after meropenem exposure.
Materials and Methods: Ten isolates of P. aeruginosa from the Clinical Microbiology Department, Faculty of Medicine, Universitas Indonesia were used. After the bacteria were shown to be sensitive to meropenem phenotypically, intrinsic resistance genes were detected using PCR. After meropenem exposure on Days 5 and 12, sensitivity testing was carried out with the concentration gradient method and RNA was detected using real-time RT-PCR.
Results: All P. aeruginosa isolates that were phenotypically sensitive to meropenem had the ampC, mexA, and oprD genes. An increase in MIC, an increase in ampC and mexA gene expression, and a decrease in oprD gene expression were observed after meropenem exposure. There was a very strong and significant correlation (p ≤ 0.05) between MIC and oprD gene expression after Day 12 of meropenem exposure.
Conclusion: Although there were no significant differences in MIC and ampC, mexA, and oprD gene expression between Day 5 and Day 12, there was a very strong and significant correlation between MIC and oprD gene expression on Day 12 (p ≤ 0.05). This indicates that decreasing oprD gene expression has the potential to increase meropenem resistance in Pseudomonas aeruginosa.
2. Hassanzadeh S, Khoramrooz SS, Mazloomirad F, Sharifi A, Roustaei N, Gholamnezhad M, et al. Bacterial profile and their antimicrobial resistance patterns among patients with community-acquired pneumonia in southwestern Iran. Iran J Microbiol 2023; 15: 343-349.
3. Ribeiro ÁCDS, Crozatti MTL, Silva AAD, Macedo RS, Machado AMO, Silva ATA. Pseudomonas aeruginosa in the ICU: Prevalence, resistance profile, and antimicrobial consumption. Rev Soc Bras Med Trop 2019; 53: e20180498.
4. Glen KA, Lamont IL. β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10: 1638.
5. Tafti FA, Eslami G, Zandi H, Barzegar K. Mutations in nalc gene of Mex AB-OprM efflux pump in carbapenem resistant Pseudomonas aeruginosa isolated from burn wounds in Yazd, Iran. Iran J Microbiol 2020; 12: 32-36.
6. Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iran J Microbiol 2016; 8: 249-256.
7. Pelegrin AC, Saharman YR, Griffon A, Palmieri M, Mirande C, Karuniawati A, et al. High-risk international clones of carbapenem-nonsusceptible Pseudomonas aeruginosa endemic to Indonesian intensive care units: impact of a multifaceted infection control intervention analyzed at the genomic level. mBio 2019; 10(6): e02384-19.
8. Weinstein MP. Performance standards for antimicrobial susceptibility testing. 31st ed. Vol. 41. Clinical and Laboratory Standars Institute; 2021.
9. Gobezie MY, Hassen M, Tesfaye NA, Solomon T, Demessie MB, Kassa TD, et al. Prevalence of meropenem-resistant Pseudomonas aeruginosa in Ethiopia: a systematic review and meta analysis. Antimicrob Resist Infect Control 2024; 13: 37.
10. Ayobami O, Willrich N, Harder T, Okeke IN, Eckmanns T, Markwart R. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect 2019; 8: 1747-1759.
11. Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect Dis 2017; 17: 616.
12. Omulo S, Oluka M, Achieng L, Osoro E, Kinuthia R, Guantai A, et al. Point-prevalence survey of antibiotic use at three public referral hospitals in Kenya. PLoS One 2022; 17(6): e0270048.
13. Addis T, Araya S, Desta K. Occurrence of multiple, extensive and pan drug-resistant Pseudomonas aeruginosa and carbapenemase production from presumptive isolates stored in a biobank at ethiopian public health institute. Infect Drug Resist 2021; 14: 3609-3618.
14. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 2014; 6: 534-538.
15. Ayesha BB, Gachinmath S, Sobia C. Isolation of obligate anaerobes from clinical samples received for routine bacterial culture and sensitivity: a cross sectional study. Iran J Microbiol 2022; 14: 145-155.
16. Momenah AM, Bakri RA, Jalal NA, Ashgar SS, Felemban RF, Bantun F, et al. Antimicrobial resistance pattern of Pseudomonas aeruginosa: an 11-year experience in a tertiary care Hospital in Makkah, Saudi Arabia. Infect Drug Resist 2023; 16: 4113-4122.
17. Madhavan A, Sachu A, Balakrishnan A, Vasudevan A, Balakrishnan S, Vasudevapanicker J. Comparison of PCR and phenotypic methods for the detection of methicillin resistant Staphylococcus aureus. Iran J
Microbiol 2021; 13: 31-36.
18. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6: 71-79.
19. Lee M, Chung H-S. Different antimicrobial susceptibility testing methods to detect ertapenem resistance in enterobacteriaceae: VITEK2, MicroScan, Etest, disk diffusion, and broth microdilution. J Microbiol Methods 2015; 112: 87-91.
20. Murugan N, Malathi J, Therese KL, Madhavan HN. Application of six multiplex PCR’s among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes. Kaohsiung J Med Sci 2018; 34: 79-88.
21. Morales S, Gallego MA, Vanegas JM, Jiménez JN. Detection of carbapenem resistance genes in Pseudomonas aeruginosa isolates with several phenotypic susceptibility profiles. Ces Med 2018; 32: 203-214.
22. Dumas JL, Van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254: 217-225.
23. Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, et al. Efflux pumps, OprD porin, AmpC β-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2010; 54: 2219-2224.
24. McMillan M, Pereg L. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. PLoS One 2014; 9(5): e98162.
25. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7: 212527.
26. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7: 39.
27. Poole K. Pseudomonas aeruginosa: Resistance to the max. Front Microbiol 2011; 2: 65.
28. Cabot G, Ocampo-Sosa AA, Tubau F, Macia MD, Rodríguez C, Moya B, et al. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: Prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother 2011; 55: 1906-1911.
29. Lee J-Y, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 2012; 40: 168-172.
Files | ||
Issue | Vol 16 No 3 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v16i3.15760 | |
Keywords | ||
Pseudomonas aeruginosa; Meropenem; Antibiotic resistance; Minimum inhibitory concentration; Gene expression |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |