Screening and evaluation of the ruminal cellulolytic bacteria and their potential application as probiotics
Abstract
Background and Objectives: Rumen microbiologists are looking for new probiotics to improve the digestibility of livestock diets. This study intended to screen and evaluate the ruminal cellulolytic bacteria (CBs) and their potential application as probiotics.
Materials and Methods: Microbial culture and molecular techniques performed to isolate CBs from the rumen of camels, deer and rams. Their antibacterial and antibiogram tests were done using disc diffusion method. Their potential to degrade cellulose, starch, tannin and protein were investigated using clear zone halo, and spectrophotometric techniques. Bilious, saline, and acidic broth media were used to study the resistance of isolates in intestinal conditions.
Results: The phylogenetic analysis revealed that the strains belonged to Firmicutes and Proteobacteria phyla, Citrobacter murliniae, Ornithinibacillus bavariensis, C. braakii, and Bacillus subtilis. The highest cellulase (CAS) activity was recorded by C. murliniae Dez wildlife13A (2.98 UmL-1), whereas C. braakii Loot desert 111A (1.14 Uml-1) was produced the lowest enzyme. The isolates were highly resistant to synthetic conditions of intestine (pH 2.5-3.5, bile 0.3-2%), as well as tolerated higher concentrations of NaCl (up to 10%). They effectively inhibited standard pathogen strains, and showed sensitivity to the used antibiotics.
Conclusion: This study reports the cellulolytic O. bavariensis Tabbas desert 32A for the first time from the rumen, which will have potential biotechnological applications.
2. Walls LE, Otoupal P, Ledesma-Amaro R, Velasquez-Orta SB, Gladden JM, Rios-Solis L. Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides. Bioresour Technol 2023; 368: 128216.
3. Nguyen NH, Maruset L, Uengwetwanit T, Mhuantong W, Harnpicharnchai P, Champreda V, et al. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci Biotechnol Biochem 2012; 76: 1075-1084.
4. Nyonyo T, Shinkai T, Mitsumori M. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS Microbiol Ecol 2014; 88: 528-537.
5. Guder DG, Krishna MSR. Isolation and characterization of potential cellulose degrading bacteria from sheep rumen. J Pure Appl Microbiol 2019; 13: 1831-1839.
6. Gheibipour M, Ghiasi SE, Bashtani M, Torbati MBM, Motamedi H. Screening the Rumen of Balochi Camel (Camelus dromedarius) and Cashmere Goat (Capra hircus) to isolate enzyme-producing bacteria as potential additives for animal feed. Indian J Microbiol 2024; 10.1007/s12088-024-01197-7.
7. Sun W, Shi H, Gong C, Liu K, Li G. Effects of different yeast selenium levels on rumen fermentation parameters, digestive enzyme activity and gastrointestinal microflora of sika deer during antler growth. Microorganisms 2023; 11: 1444.
8. Hamann PRV, Noronha EF. Xylan-breakdown apparatus of Clostridium thermocellum. Cellulose 2022; 29: 7535-7553.
9. Khalil T, Okla MK, Al-Qahtani WH, Ali F, Zahra M, Shakeela Q, et al. Tracing probiotic producing bacterial species from gut of buffalo (Bubalus bubalis), South-East-Asia. Braz J Biol 2022; 84: e259094.
10. FAO (2016). Probiotics in animal nutrition; Production, impact and regulation by Bajagai YS, Klieve AV, Dart PJ, Bryden WL. Editor. Makkar HPS. FAO Animal Production and Health Paper No. 179. Rome.
11. Chaucheyras-Durand F, Durand H. Probiotics in animal nutrition and health. Benef Microbes 2010; 1: 3-9.
12. Sari WN, Safika, Darmawi, Fahrimal Y. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle. Vet World 2017; 10: 1515-1520.
13. Prazdnova EV, Mazanko MS, Bren AB, Chistyakov VA, Weeks R, Chikindas ML. SOS response inhibitory properties by potential probiotic formulations of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 obtained by solid-state fermentation. Curr Microbiol 2019; 76: 312-319.
14. FASS. Guide for the care and use of agricultural animals in research and teaching, 3rd ed. Federation of Animal Science Societies, Champaign, IL 2010.
15. Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2008; 33: 191-205.
16. Cappuccino JG, Sherman N (2004). Microbiology: A laboratory manual. 7th ed. Pearson Education Publication.
17. Jin MY, Zhang T, Yang YS, Ding Y, Li JS, Zhong GR. A simplified and miniaturized glucometer-based assay for the detection of β-glucosidase activity. J Zhejiang Univ Sci B 2019; 20: 264-272.
18. Singh S, Thavamani P, Megharaj M, Naidu R. Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces. J Anim Sci Technol 2015; 57: 23.
19. Pailin T, Kang DH, Schmidt K. Fung DY. Detection of extracellular bound proteinase in EPS‐producing lactic acid bacteria cultures on skim milk agar. Lett Appl Microbiol 2001; 33: 45-49.
20. Chowdhury A, Hossain MN, Mostazir NJ, Fakruddin M, Billah MM, Ahmed MM. Screening of Lactobacillus spp. from buffalo yoghurt for probiotic and antibacterial activity. J Bacteriol Parasitol 2012; 3: 156.
21. Aslim B, Yukesekdag ZN, Sarikaya E, Beyatli Y. Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT-Food Sci Technol 2005; 38: 691-694.
22. Khan A, Erickson SG, Pettaway C, Arias CA, Miller WR, Bhatti MM. Evaluation of susceptibility testing methods for aztreonam and ceftazidime-avibactam combination therapy on extensively drug-resistant gram-negative organisms. Antimicrob Agents Chemother 2021; 65(11): e0084621.
23. Shin SK, Lee Y, Kwon H, Rhee JS, Kim JK. Validation of Direct Boiling Method for Simple and Efficient Genomic DNA Extraction and PCR‐based Macroalgal Species Determination. J Phycol 2021; 57: 1368-1372.
24. Beheshti Ale Agha A, Kahrizi D, Ahmadvand A, Bashiri H, Fakhri R. Development of PCR primer systems for amplification of 16S-rDNA to detect of Thiobacillus spp. Cell Mol Biol (Noisy-le-grand) 2017; 63: 37-41.
25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549.
26. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49: W293-W296.
27. SAS Institute (2009). SAS User’s Guide. Version 9.2. SAS Inst. Inc, Cary, NC.
28. Dhakal S, Boath JM, Van TTH, Moore RJ, Macreadie IG. Siccibacter turicensis from Kangaroo Scats: Possible implication in cellulose digestion. Microorganisms 2020; 8: 635.
29. Rawway M, Ali SG, Badawy AS. Isolation and identification of cellulose degrading bacteria from different sources at Assiut Governorate (Upper Egypt). J Ecol Health Environ 2018; 6: 15-24.
30. Gheibipour M, Ghiasi SE, Bashtani M, Montazer Torbati MB, Motamedi H. The potential of tannin degrading bacteria isolated from rumen of Iranian Urial ram as silage additives. Bioresour Technol Rep 2022; 18: 101024.
31. Huang G, Wang X, Hu Y, Wu Q, Nie Y, Dong J, et al. Diet drives convergent evolution of gut microbiomes in bamboo-eating species. Sci China Life Sci 2021; 64: 88-95.
32. Lee CG, Baba Y, Asano R, Fukuda Y, Tada C, Nakai Y. Identification of bacteria involved in the decomposition of lignocellulosic biomass treated with cow rumen fluid by metagenomic analysis. J Biosci Bioeng 2020; 130: 137-141.
33. Calumby RJN, de Almeida LM, de Barros YN, Segura WD, Barbosa VT, da Silva AT, et al. Characterization of cultivable intestinal microbiota in Rhynchophorus palmarum Linnaeus (Coleoptera: Curculionidae) and determination of its cellulolytic activity. Arch Insect Biochem Physiol 2022; 110(2): e21881.
34. Nafi’u A, Usman MH, Abdullahi BY, Mustapha G, Maiturare HM. Screening and identification of cellulase- producing bacteria isolated from rumen of camel in Sokoto Main Abattoir. IJSRM 2015; 5: 5826-5832.
35. Rawway M, Ali SG, Badawy AS. Isolation and identification of cellulose degrading bacteria from different sources at Assiut Governorate (Upper Egypt). J Ecol Health Environ 2018; 6: 15-24.
36. Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 2006; 3: 47-53.
37. Akhtar N, Sharma A, Deka D, Jawed M, Goyal D, Goyal A. Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environ Prog Sustain Energy 2013; 32: 1195-1201.
38. Lee CG, Baba Y, Asano R, Fukuda Y, Tada C, Nakai Y. Identification of bacteria involved in the decomposition of lignocellulosic biomass treated with cow rumen fluid by metagenomic analysis. J Biosci Bioeng 2020; 130: 137-141.
39. Potprommanee L, Wang X-Q, Han Y-J, Nyobe D, Peng Y-P, Huang Q, et al. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One 2017; 12(4): e0175004.
40. Singh S, Bajaj BK. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid state fermentation. Prep Biochem Biotechnol 2016; 46: 717-724.
41. Arokiyaraj S, Hairul Islam VI, Bharanidharan R, Raveendar S, Lee J, Kim DH, et al. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius. World J Microbiol Biotechnol 2014; 30: 2111-2118.
42. Bader J, Albin A, Stahl U. Spore-forming bacteria and their utilisation as probiotics. Benef Microbes 2012; 3: 67-75.
43. Naeem M, Ahmed I, Ahmed S, Ahmed Z, Riaz MN, Ghazanfar S. Screening of cattle gut associated Bacillus strains for their potential use as animal probiotic. Indian J Anim Res 2018; 1-6.
44. Parveen Rani R, Anandharaj M, Hema S, Deepika R, David Ravindran A. Purification of antilisterial peptide (Subtilosin A) from novel Bacillus tequilensis FR9 and demonstrate their pathogen invasion protection ability using human carcinoma cell line. Front Microbiol 2016; 7: 1910.
45. Qu J-H, Fu Y-H, Yue Y-F, Li H-F. Description of Ornithinibacillus gellani sp. nov., a halophilic bacterium isolated from lake sediment, and emended description of the genus Ornithinibacillus. Int J Syst Evol Microbiol 2019; 69: 2632-2637.
46. Gan L, Zhang H, Long X, Tian J, Wang Z, Zhang Y, et al. Ornithinibacillus salinisoli sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2018; 68: 769-775.
47. Bagheri M, Amoozegar MA, Schumann P, Didari M, Mehrshad M, Spröer C, et al. Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63: 844-848.
48. Selle PH, Ravindran V. Microbial phytase in poultry nutrition. Anim Feed Sci Technol 2007; 135: 1-41.
49. Rajabi M, Nourisanami F, Ghadikolaei KK, Changizian M, Noghabi KA, Zahiri HS. Metagenomic psychrohalophilic xylanase from camel rumen investigated for bioethanol production from wheat bran using Bacillus subtilis AP. Sci Rep 2022; 12: 8152.
50. Li D, Ni K, Pang H, Wang Y, Cai Y, Jin Q. Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian-Australas J Anim Sci 2015; 28: 620-631.
51. Khelil O, Choubane S, Maredj K, Mahiddine FZ, Hamouta A. UV mutagenesis for the overproduction of thermoalkali-557 stable α-amylase from Bacillus subtilis TLO3 by fermentation of stale bread: Potential application as detergent additive. Biocatal Agric Biotechnol 2022; 43: 102403.
52. Li X, Zhang SH, Gan L, Cai C, Tian Y, Shi B. Ornithinibacillus caprae sp. nov., a moderate halophile isolated from the hides of a white goat. Arch Microbiol 2020; 202: 1469-1476.
53. Carvalho IPCD, Detmann E, Mantovani HC, Paulino MF, de Campos Valadares Filho S, Costa VAC, et al. Growth and antimicrobial activity of lactic acid bacteria from rumen fluid according to energy or nitrogen source. Rev Bras Zootec 2011; 40: 1260-1265.
54. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov.and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 1383-1389.
55. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ, Schumann P. Ornithinibacillus contaminans sp. nov., an endosporeforming species. Int J Syst Evol Microbiol 2010; 60: 2930-2934.
56. Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ, Kim YO, et al. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie Van Leeuwenhoek 2012; 101: 147-154.
57. Lu Q, Yuan H, Li J, Zhao Y, Zhou S. Ornithinibacillus composti sp. nov.isolated from sludge compost and emended description of the genus Ornithinibacillus. Antonie Van Leeuwenhoek 2015; 107: 813-819.
Files | ||
Issue | Vol 16 No 3 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v16i3.15796 | |
Keywords | ||
Camelus; Cellulase; Deer; Ornithinibacillus bavariensis; Probiotic |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |