Original Article

Investigation of the effect of dimethyl sulfoxide on growth and biofilm formation of Pseudomonas aeruginosa

Abstract

Background and Objectives: The antimicrobial resistance of Pseudomonas aeruginosa bacteria limits the spectrum of effective antibiotics. Considerable focus has been placed on the identification of more contemporary and cost-effective antimicrobial drugs. In this study, the antibacterial properties of a commonly used solvent, dimethyl sulfoxide (DMSO), against P. aeruginosa were investigated.
Materials and Methods: The microtiter broth dilution technique was employed to establish the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DMSO. The solvent’s impact on bacterial growth, biofilm formation and eradication was assessed. A quantitative polymerase chain reaction (qPCR) was carried out to assess the effect of varying DMSO concentrations ranging from 1% to 8% (v/v) on quorum sensing gene expression.
Results: All P. aeruginosa strains exhibited a DMSO MIC of 25% v/v and MBC of 50% v/v. DMSO caused significant growth inhibition and suppression of biofilm formation in all P. aeruginosa strains at sub-inhibitory concentrations, i.e. 1%-8% v/v. At these concentrations, the samples showed a reduction in biomass and reduced metabolic activity. These effects were concentration-dependent. A DMSO strength of 8% v/v was associated with a statistically significant downregulation of most of the quorum sensing genes; at a DMSO titer of 1% v/v, this effect was modest with only a few genes being significantly affected.
Conclusion: DMSO is a potential therapeutic agent against P. aeruginosa as it has been demonstrated that it exhibits antimicrobial characteristics. Moreover, the impact of DMSO on bacterial growth and biofilm formation complicates its use as a solvent in biologic and clinical research.

1. Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018; 31(4): e00019-18.
2. Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21: 8671.
3. Brindhadevi K., LewisOscar F, Mylonakis E, Shanmugam S, Nath Verma T, pugazgendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem 2020; 96: 49-57.
4. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6: 26-41.
5. Duplantier M, Lohou E, Sonnet P. Quorum sensing Inhibitors to Quench P. aeruginosa pathogenicity. Pharmaceuticals (Basel) 2021; 14: 1262.
6. Wu XF, Natte K. The applications of dimethyl sulfoxide as reagent in organic synthesis. Adv Synt Catal 2016; 358: 336-352.
7. McKim AS, Strub R. Advances in the regulated pharmaceutical use of dimethyl sulfoxide USP, Ph.Eur. Pharm Technol Eur 2018; 28(8 Suppl): S32-S32.
8. Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Dimethyl Sulfoxide: Yesterday's solvent, today's reagent. Adv Synth Catal 2020; 362: 65-86.
9. Russo MA, Santarelli DM. A novel compound analgesic cream (ketamine, pentoxifylline, clonidine, DMSO) for complex regional pain syndrome patients. Pain Pract 2016; 16: E14-E20.
10. de Abreu Costa L, Henrique Fernandes Ottoni M, Dos Santos MG, Meireles AB, Gomes de Almeida V, de Fátima Pereira W, et al. Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-α, IFN-γ, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules 2017; 22: 1789.
11. Ryumkina IN, Shkil NN, Nefyodova EV, Shkil NA, Nozdrin GA, Lazareva MV, et al. Adjuvant properties of silver and dimethyl sulfoxide nanoparticles in studying antibacterial activity of antibiotics against E. coli. Int J Agric Biol Sci 2020; 4: 119-126.
12. Yahya MFZR, Alias Z, Karsani SA. Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens. Folia Microbiol (Praha) 2018; 63: 23-30.
13. Martín-Rodríguez AJ, Reyes-Darias JA, Martín-Mora D, González JM, Krell T, Römling U. Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPJ Biofilms Microbiomes 2021; 7: 9.
14. Homero U, Tortella G, Sandoval E, Cuozzo SA. Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties. Microbiol Res 2021; 253: 126877.
15. Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, et al. Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1. J Med Chem 2017; 60: 7267-7283.
16. Gironi B, Kahveci Z, McGill B, Lechner BD, Pagliara S, Metz J, et al. Effect of DMSO on the mechanical and structural properties of model and biological membranes. Biophys J 2020; 119: 274-286.
17. Pawar CD, Pansare DN, Shinde DB. (Substituted)-benzo (b) thiophene-4-carboxamide Synthesis and Anti-proliferative Activity Study. Lett Drug Des Discov 2020; 17: 563-573.
18. Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, et al. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother 2007; 51: 4125-4132.
19. Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol 2014; 1149: 631-641.
20. Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock RE. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 2018; 8: 29.
21. Mulet M, Lalucat J, García‐Valdés E. DNA sequence‐based analysis of the Pseudomonas species. Environ Microbiol 2010; 12: 1513-1530.
22. Capriotti K, Capriotti JA. Dimethyl sulfoxide: history, chemistry, and clinical utility in dermatology. J Clin Aesthet Dermatol 2012; 5: 24-26.
23. Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clin Microbiol 2019; 57(4): e01390-18.
24. de Brito RC, da Silva GN, Farias TC, FerreiraPB, Ferreira SB. Standardization of the safety level of the use of DMSO in viability assays in bacterial cells. MOL2NET 2017; 3: 1-6.
25. Deutch CE. Inhibition of urease activity in the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis by dimethylsulfoxide (DMSO). J Appl Microbiol 2020; 128: 1514-1523.
26. Kirkwood ZI, Millar BC, Downey DG, Moore JE. Antimicrobial effect of dimethyl sulfoxide and N, N-Dimethylformamide on Mycobacterium abscessus: Implications for antimicrobial susceptibility testing. Int J Mycobacteriol 2018; 7: 134-136.
27. Randhawa MA. The effect of dimethyl sulfoxide (DMSO) on the growth of dermatophytes. Nihon Ishinkin Gakkai Zasshi 2006; 47: 313-318.
28. Wu C-Y, Wang C-Y, Sun G-J, Li W, Lin Y-Y, Zhang X-Y, et al. Antibacterial characteristics of allyl methyl disulfide and dimethyl trisulfide of Allium tenuissimum flower essential oil against Escherichia coli O157: H7. Ind Crops Prod 2023; 202: 117058.
29. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol 2019; 10: 913.
30. Kapralos V, Koutroulis A, Ørstavik D, Sunde PT, Rukke HV. Antibacterial activity of endodontic sealers against planktonic bacteria and bacteria in biofilms. J Endod 2018; 44: 149-154.
31. Hernando-Amado S, Martínez JL. Antimicrobial Resistance in Pseudomonas aeruginosa. Microorganisms 2023; 11: 744.
32. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 2010; 59: 253-268.
33. Zegans ME, Wozniak D, Griffin E, Toutain-Kidd CM, Hammond JH, Garfoot AL, et al. Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 2012; 56: 4112-4122.
34. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low‐dose toxicity of the universal solvent DMSO. FASEB J 2014; 28: 1317-1330.
35. Maihöfner C, Seifert F, Markovic K. Complex regional pain syndromes: new pathophysiological concepts and therapies. Eur J Neurol 2010; 17: 649-660.
36. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO represses inflammatory cytokine production from human blood cells and reduces autoimmune arthritis. PLoS One 2016; 11(3): e0152538.
37. Mi H, Wang D, Xue Y, Zhang Z, Niu J, Hong Y, et al. Dimethyl sulfoxide protects Escherichia coli from rapid antimicrobial-mediated killing. Antimicrob Agents Chemother 2016; 60: 5054-5058.
38. Guo Q, Wu Q, Bai D, Liu Y, Chen F, Liu L, et al. Potential use of dimethyl sulfoxide in treatment of infections caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60: 7159-7169.
39. Zhao X, Hong Y, Drlica K. Moving forward with reactive oxygen species involvement in antimicrobial lethality. J Antimicrob Chemother 2015; 70: 639-642.
40. Dyrda G, Boniewska-Bernacka E, Man D, Barchiewicz K, Słota R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep 2019; 46: 3225-3232.
Files
IssueVol 17 No 6 (2025) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v17i6.20362
Keywords
Cystic fibrosis (CF) Pseudomonas aeruginosa Dimethyl sulfoxide (DMSO) Anti-bacterial agents Bacterial growth Biofilms

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Al-Momani H, Mashal S, AlGhawrie H. Investigation of the effect of dimethyl sulfoxide on growth and biofilm formation of Pseudomonas aeruginosa. Iran J Microbiol. 2025;17(6):942-953.