Original Article

Antibacterial and antibiofilm activities of diclofenac against levofloxacin-resistant Stenotrophomonas maltophilia isolates; emphasizing repurposing of diclofenac

Abstract

Background and Objectives: Stenotrophomonas maltophilia is an opportunistic pathogen causing nosocomial infections. Diclofenac is an anti-inflammatory drug that is considered a non-antibiotic drug. This study assessed the antibacterial and antibiofilm effects of diclofenac and levofloxacin/diclofenac combination against levofloxacin resistant isolates.
Materials and Methods: Minimum inhibitory concentration was determined using broth microdilution method for levofloxacin, diclofenac, and levofloxacin/diclofenac combination. Biofilm forming capacity and biofilm inhibition assay were determined. Relative gene expression was measured for efflux pump genes; smeB, and smeF genes and biofilm related genes rmlA, spgM, and rpfF without and with diclofenac and the combination.
Results: Diclofenac demonstrated MIC of 1 mg/ml. The combination-with ½ MIC diclofenac- showed synergism where levofloxacin MIC undergone 16-32 fold decrease. All the isolates that overexpressed smeB and smeF showed a significant decrease in gene expression in presence of diclofenac or the combination. The mean percentage inhibition of biofilm formation with diclofenac and the combination was 40.59% and 46.49%, respectively. This agreed with biofilm related genes expression investigations.
Conclusion: Diclofenac showed an antibacterial effect against Stenotrophomonas maltophilia. The combination showed in-vitro synergism, significant reduction in biofilm formation and in the relative level of gene expression. Furthermore, it can potentiate the levofloxacin activity or revert its resistance.

1. Blanco P, Corona F, Martínez JL. Involvement of the RND efflux pump transporter SmeH in the acquisition of resistance to ceftazidime in Stenotrophomonas maltophilia. Sci Rep 2019; 9: 4917.
2. Chang Y-T, Lin C-Y, Chen Y-H, Hsueh P-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6: 893.
3. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 2017; 8: 2276.
4. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev Anti Infect Ther 2014; 12: 1-4.
5. Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17: 877-893.
6. Gibb J, Wong DW. Antimicrobial treatment strategies for Stenotrophomonas maltophilia: a focus on novel therapies. Antibiotics (Basel) 2021; 10: 1226.
7. Brooke JS. Advances in the Microbiology of Stenotrophomonas maltophilia. Clin Microbiol Rev 2021; 34(3): e0003019.
8. Junco SJ, Bowman MC, Turner RB. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int J Antimicrob Agents 2021; 58: 106367.
9. Ebrahim-Saraie HS, Heidari H, Soltani B, Mardaneh J, Motamedifar M. Prevalence of antibiotic resistance and integrons, sul and Smqnr genes in clinical isolates of Stenotrophomonas maltophilia from a tertiary care hospital in Southwest Iran. Iran J Basic Med Sci 2019; 22: 872-877.
10. Yakout MA, ElBaradei A. Emergence of Stenotrophomonas maltophilia co-harboring tetM and smqnr and over-expressing different efflux pumps among clinical isolates from tertiary care hospitals in Alexandria, Egypt. Microbes Infect Dis 2022; 3: 300-308.
11. Azimi A, Aslanimehr M, Yaseri M, Shadkam M, Douraghi M. Distribution of smf-1, rmlA, spgM and rpfF genes among Stenotrophomonas maltophilia isolates in relation to biofilm-forming capacity. J Glob Antimicrob Resist 2020; 23: 321-326.
12. ElBaradei A, Yakout MA. Stenotrophomonas maltophilia: genotypic characterization of virulence genes and the effect of ascorbic acid on biofilm formation. Curr Microbiol 2022; 79: 180.
13. Mazumdar K, Dastidar SG, Park JH, Dutta NK. The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 2009; 28: 881-891.
14. Chockattu SJ, Deepak BS, Goud KM. Comparison of anti-bacterial efficiency of ibuprofen, diclofenac, and calcium hydroxide against Enterococcus faecalis in an endodontic model: An in vitro study. J Conserv Dent 2018; 21: 80-84.
15. Paes Leme RC, da Silva RB. Antimicrobial activity of non-steroidal anti-inflammatory drugs on biofilm: Current evidence and potential for drug repurposing. Front Microbiol 2021; 12: 707629.
16. Ulusoy S, Bosgelmez-Tinaz G. Nonsteroidal anti-inflammatory drugs reduce the production of quorum sensing regulated virulence factors and swarm in motility in human pathogen Pseudomonas aeruginosa (corrected). Drug Res (Stuttg) 2013; 63: 409-413.
17. Reśliński A, Dąbrowiecki S, Głowacka K. The impact of diclofenac and ibuprofen on biofilm formation on the surface of polypropylene mesh. Hernia 2015; 19: 179-185.
18. Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front Cell Infect Microbiol 2021; 11: 684515.
19. Tille P (2015). Bailey & Scott's diagnostic microbiology-E-Book. St. Louis: Elsevier Health Sciences.
20. Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. 32th ed. Pennsylvania: CLSI; 2022.
21. Seukep JA, Sandjo LP, Ngadjui BT, Kuete V. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med 2016; 16: 193.
22. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011; 15: 305-311.
23. Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 2017; 107: 193-197.
24. Thenmozhi R, Nithyanand P, Rathna J, Pandian SK. Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 2009; 57: 284-294.
25. Esposito A, Vollaro A, Esposito EP, D'Alonzo D, Guaragna A, Zarrilli R, et al. Antibacterial and antivirulence activity of Glucocorticoid PYED-1 against Stenotrophomonas maltophilia. Antibiotics (Basel) 2020; 9: 105.
26. Sánchez MB, Martínez JL. Overexpression of the efflux Pumps SmeVWX and SmeDEF Is a major cause of resistance to co-trimoxazole in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2018; 62(6): e00301-18.
27. Zhuo C, Zhao Q-Y, Xiao S-N. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS One 2014; 9(10): e108409.
28. Chang L-L, Chen H-F, Chang C-Y, Lee T-M, Wu W-J. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2004; 53: 518-521.
29. Laudy AE, Mrowka A, Krajewska J, Tyski S. The influence of efflux Pump inhibitors on the activity of non-antibiotic NSAIDS against Gram-negative rods. PLoS One 2016; 11(1): e0147131.
30. Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to fluoroquinolones. PLoS One 2020; 15(8): e0238195.
31. Riordan JT, Dupre JM, Cantore-Matyi SA, Kumar-Singh A, Song Y, Zaman S, et al. Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 2011; 10: 30.
32. Li X, Xue X, Jia J, Zou X, Guan Y, Zhu L, et al. Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. Environ Pollut 2023; 326: 121457.
33. García-León G, Salgado F, Oliveros JC, Sánchez MB, Martínez JL. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ Microbiol 2014; 16: 1282-1296.
34. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45: 3497-3503.
35. Cho HH, Sung JY, Kwon KC, Koo SH. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 2012; 32: 38-43.
36. Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnar J, et al. Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int J Antimicrob Agents 2007; 30: 242-249.
37. Abbas HA, Atallah H, El-Sayed MA, El-Ganiny AM. Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch Microbiol 2020; 202: 2751-2760.
38. Magesh H, Kumar A, Alam A, Priyam, Sekar U, Sumantran VN, et al. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 2013; 51: 764-772.
39. Leão C, Borges A, Simões M. NSAIDs as a drug repurposing strategy for biofilm control. Antibiotics (Basel) 2020; 9: 591.
40. Masubuchi Y, Ose A, Horie T. Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab Dispos 2002; 30: 1143-1148.
41. Podder V, Sadiq NM. Levofloxacin. (Updated 2022 Sep 23). In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545180/
42. Oliveira IM, Borges A, Borges F, Simões M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur J Med Chem 2019; 166: 197-205.
43. Tzeng S-R, Huang Y-W, Zhang Y-Q, Yang C-Y, Chien H-S, Chen Y-R, et al. A celecoxib derivative eradicates antibiotic-resistant Staphylococcus aureus and biofilms by targeting YidC2 translocase. Int J Mol Sci 2020; 21: 9312.
44. Pereira SG, Domingues VS, Theriága J, Chasqueira MJ, Paixão P. Non-antimicrobial drugs: etodolac as a possible antimicrobial or adjuvant agent against ESKAPE pathogens. Open Microbiol J 2018; 12: 288-296.
Files
IssueVol 16 No 2 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v16i2.15349
Keywords
Diclofenac; Stenotrophomonas maltophilia; Levofloxacin; Biofilm; Synergism

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
El-Soudany I, Abdelwahab I, Yakout M. Antibacterial and antibiofilm activities of diclofenac against levofloxacin-resistant Stenotrophomonas maltophilia isolates; emphasizing repurposing of diclofenac. Iran J Microbiol. 2024;16(2):166-175.