Antibacterial and antibiofilm activities of diclofenac against levofloxacin-resistant Stenotrophomonas maltophilia isolates; emphasizing repurposing of diclofenac
Abstract
Background and Objectives: Stenotrophomonas maltophilia is an opportunistic pathogen causing nosocomial infections. Diclofenac is an anti-inflammatory drug that is considered a non-antibiotic drug. This study assessed the antibacterial and antibiofilm effects of diclofenac and levofloxacin/diclofenac combination against levofloxacin resistant isolates.
Materials and Methods: Minimum inhibitory concentration was determined using broth microdilution method for levofloxacin, diclofenac, and levofloxacin/diclofenac combination. Biofilm forming capacity and biofilm inhibition assay were determined. Relative gene expression was measured for efflux pump genes; smeB, and smeF genes and biofilm related genes rmlA, spgM, and rpfF without and with diclofenac and the combination.
Results: Diclofenac demonstrated MIC of 1 mg/ml. The combination-with ½ MIC diclofenac- showed synergism where levofloxacin MIC undergone 16-32 fold decrease. All the isolates that overexpressed smeB and smeF showed a significant decrease in gene expression in presence of diclofenac or the combination. The mean percentage inhibition of biofilm formation with diclofenac and the combination was 40.59% and 46.49%, respectively. This agreed with biofilm related genes expression investigations.
Conclusion: Diclofenac showed an antibacterial effect against Stenotrophomonas maltophilia. The combination showed in-vitro synergism, significant reduction in biofilm formation and in the relative level of gene expression. Furthermore, it can potentiate the levofloxacin activity or revert its resistance.
2. Chang Y-T, Lin C-Y, Chen Y-H, Hsueh P-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6: 893.
3. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 2017; 8: 2276.
4. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev Anti Infect Ther 2014; 12: 1-4.
5. Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17: 877-893.
6. Gibb J, Wong DW. Antimicrobial treatment strategies for Stenotrophomonas maltophilia: a focus on novel therapies. Antibiotics (Basel) 2021; 10: 1226.
7. Brooke JS. Advances in the Microbiology of Stenotrophomonas maltophilia. Clin Microbiol Rev 2021; 34(3): e0003019.
8. Junco SJ, Bowman MC, Turner RB. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int J Antimicrob Agents 2021; 58: 106367.
9. Ebrahim-Saraie HS, Heidari H, Soltani B, Mardaneh J, Motamedifar M. Prevalence of antibiotic resistance and integrons, sul and Smqnr genes in clinical isolates of Stenotrophomonas maltophilia from a tertiary care hospital in Southwest Iran. Iran J Basic Med Sci 2019; 22: 872-877.
10. Yakout MA, ElBaradei A. Emergence of Stenotrophomonas maltophilia co-harboring tetM and smqnr and over-expressing different efflux pumps among clinical isolates from tertiary care hospitals in Alexandria, Egypt. Microbes Infect Dis 2022; 3: 300-308.
11. Azimi A, Aslanimehr M, Yaseri M, Shadkam M, Douraghi M. Distribution of smf-1, rmlA, spgM and rpfF genes among Stenotrophomonas maltophilia isolates in relation to biofilm-forming capacity. J Glob Antimicrob Resist 2020; 23: 321-326.
12. ElBaradei A, Yakout MA. Stenotrophomonas maltophilia: genotypic characterization of virulence genes and the effect of ascorbic acid on biofilm formation. Curr Microbiol 2022; 79: 180.
13. Mazumdar K, Dastidar SG, Park JH, Dutta NK. The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 2009; 28: 881-891.
14. Chockattu SJ, Deepak BS, Goud KM. Comparison of anti-bacterial efficiency of ibuprofen, diclofenac, and calcium hydroxide against Enterococcus faecalis in an endodontic model: An in vitro study. J Conserv Dent 2018; 21: 80-84.
15. Paes Leme RC, da Silva RB. Antimicrobial activity of non-steroidal anti-inflammatory drugs on biofilm: Current evidence and potential for drug repurposing. Front Microbiol 2021; 12: 707629.
16. Ulusoy S, Bosgelmez-Tinaz G. Nonsteroidal anti-inflammatory drugs reduce the production of quorum sensing regulated virulence factors and swarm in motility in human pathogen Pseudomonas aeruginosa (corrected). Drug Res (Stuttg) 2013; 63: 409-413.
17. Reśliński A, Dąbrowiecki S, Głowacka K. The impact of diclofenac and ibuprofen on biofilm formation on the surface of polypropylene mesh. Hernia 2015; 19: 179-185.
18. Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front Cell Infect Microbiol 2021; 11: 684515.
19. Tille P (2015). Bailey & Scott's diagnostic microbiology-E-Book. St. Louis: Elsevier Health Sciences.
20. Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. 32th ed. Pennsylvania: CLSI; 2022.
21. Seukep JA, Sandjo LP, Ngadjui BT, Kuete V. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med 2016; 16: 193.
22. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011; 15: 305-311.
23. Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 2017; 107: 193-197.
24. Thenmozhi R, Nithyanand P, Rathna J, Pandian SK. Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 2009; 57: 284-294.
25. Esposito A, Vollaro A, Esposito EP, D'Alonzo D, Guaragna A, Zarrilli R, et al. Antibacterial and antivirulence activity of Glucocorticoid PYED-1 against Stenotrophomonas maltophilia. Antibiotics (Basel) 2020; 9: 105.
26. Sánchez MB, Martínez JL. Overexpression of the efflux Pumps SmeVWX and SmeDEF Is a major cause of resistance to co-trimoxazole in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2018; 62(6): e00301-18.
27. Zhuo C, Zhao Q-Y, Xiao S-N. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS One 2014; 9(10): e108409.
28. Chang L-L, Chen H-F, Chang C-Y, Lee T-M, Wu W-J. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2004; 53: 518-521.
29. Laudy AE, Mrowka A, Krajewska J, Tyski S. The influence of efflux Pump inhibitors on the activity of non-antibiotic NSAIDS against Gram-negative rods. PLoS One 2016; 11(1): e0147131.
30. Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to fluoroquinolones. PLoS One 2020; 15(8): e0238195.
31. Riordan JT, Dupre JM, Cantore-Matyi SA, Kumar-Singh A, Song Y, Zaman S, et al. Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 2011; 10: 30.
32. Li X, Xue X, Jia J, Zou X, Guan Y, Zhu L, et al. Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. Environ Pollut 2023; 326: 121457.
33. García-León G, Salgado F, Oliveros JC, Sánchez MB, Martínez JL. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ Microbiol 2014; 16: 1282-1296.
34. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45: 3497-3503.
35. Cho HH, Sung JY, Kwon KC, Koo SH. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 2012; 32: 38-43.
36. Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnar J, et al. Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int J Antimicrob Agents 2007; 30: 242-249.
37. Abbas HA, Atallah H, El-Sayed MA, El-Ganiny AM. Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch Microbiol 2020; 202: 2751-2760.
38. Magesh H, Kumar A, Alam A, Priyam, Sekar U, Sumantran VN, et al. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 2013; 51: 764-772.
39. Leão C, Borges A, Simões M. NSAIDs as a drug repurposing strategy for biofilm control. Antibiotics (Basel) 2020; 9: 591.
40. Masubuchi Y, Ose A, Horie T. Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab Dispos 2002; 30: 1143-1148.
41. Podder V, Sadiq NM. Levofloxacin. (Updated 2022 Sep 23). In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545180/
42. Oliveira IM, Borges A, Borges F, Simões M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur J Med Chem 2019; 166: 197-205.
43. Tzeng S-R, Huang Y-W, Zhang Y-Q, Yang C-Y, Chien H-S, Chen Y-R, et al. A celecoxib derivative eradicates antibiotic-resistant Staphylococcus aureus and biofilms by targeting YidC2 translocase. Int J Mol Sci 2020; 21: 9312.
44. Pereira SG, Domingues VS, Theriága J, Chasqueira MJ, Paixão P. Non-antimicrobial drugs: etodolac as a possible antimicrobial or adjuvant agent against ESKAPE pathogens. Open Microbiol J 2018; 12: 288-296.
Files | ||
Issue | Vol 16 No 2 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v16i2.15349 | |
Keywords | ||
Diclofenac; Stenotrophomonas maltophilia; Levofloxacin; Biofilm; Synergism |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |