Isolation and characterization of a bisphenol A-degrading strain, Pseudomonas aeruginosa DU2, from soil containing decaying plants
Abstract
Background and Objectives: Bisphenol A (BPA) is a toxic compound with broad applications in the plastics industry. BPA has harmful effects on various organisms and its efficient removal is necessary. The microbial degradation of BPA is a safe and economical approach. In this research, soil samples containing decaying plants were screened to isolate a BPA-degradable bacterial strain.
Materials and Methods: Soil samples were collected from different locations in Damghan, Semnan province, Iran. To enrich BPA-degrading bacteria, the samples were cultured in a stepwise manner in a mineral medium containing increasing BPA concentrations (5 to 40 mg/L). The ability of isolated bacteria in degrading BPA was assayed by Folin-Ciocalteu and high-performance liquid chromatography methods. The biodegradation efficiency of the most efficient isolate was assayed under distinct conditions and it was identified through the sequencing of the 16S rRNA gene.
Results: Among the isolated bacteria, Pseudomonas aeruginosa DU2 (GenBank accession number: OP919484) showed the most BPA biodegradation ability. The highest BPA degradation (52.98%) was observed in the mineral medium containing 5 mg/L BPA and the inoculum size of 6 × 107 CFU/mL at pH 9 and in the presence of 0.05% (w/v) NaCl during 10 days.
Conclusion: These results offer soil containing decaying plants as a promising source for finding BPA-degrading bacteria. P. aeruginosa DU2 has basal BPA removal ability, which could be improved by optimization of medium components and growth conditions.
2. Suyamud B, Inthorn D, Panyapinyopol B, Thiravetyan P. Biodegradation of Bisphenol A by a newly isolated Bacillus megaterium strain ISO-2 from a polycarbonate industrial wastewater. Water Air Soil Pollut 2018; 229: 348.
3. Louati I, Dammak M, Nasri R, Belbahri L, Nasri M, Abdelkafi S, et al. Biodegradation and detoxifcation of bisphenol A by bacteria isolated from desert soils. 3 Biotech 2019; 9: 228.
4. Noszczyńska M, Chodór M, Jałowiecki Ł, Piotrowska-Seget Z. A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation 2021; 32: 1-15.
5. Lehmler H-J, Liu B, Gadogbe M, Bao W. Exposure to bisphenol A, bisphenol F, and bisphenol S in U.S. adults and children: the national health and nutrition examination survey 2013−2014. ACS Omega 2018; 3: 6523-6532.
6. Eltoukhy A, Jia Y, Nahurira R, Abo-Kadoum MA, Khokhar I, Wang J, et al. Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol 2020; 20: 11.
7. Rochester JR. Bisphenol A and human health: A review of the literature. Reprod Toxicol 2013; 42: 132-155.
8. Abraham A, Chakraborty P. A review on sources and health impacts of bisphenol A. Rev Environ Health 2020; 35: 201-210.
9. Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: food exposure and impact on human health. Compr Rev Food Sci Food Saf 2018; 17: 1503-1517.
10. Canesi L, Fabbri E. Environmental effects of BPA: focus on aquatic species. Dose Response 2015; 13: 1559325815598304.
11. Repossi A, Farabegoli F, Gazzotti T, Zironi E, Pagliuca G. Bisphenol A in edible part of seafood. Ital J Food Saf 2016; 5: 5666.
12. de Morais Farias J, Krepsky N. Bacterial degradation of bisphenol analogues: an overview. Environ Sci Pollut Res Int 2022; 29: 76543-76564.
13. Mahesh N, Shyamalagowri S, Nithya TG, Aravind J, Govarthanan M, Kamaraj M. Trends and thresholds on bacterial degradation of bisphenol‑A endocrine disruptor - a concise review. Environ Monit Assess 2022; 194: 886.
14. Li G, Zu L, Wong P, Hui X, Lu Y, Xiong J, et al. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresour Technol 2012; 114: 224-230.
15. Huang C, Xu P, Zeng G, Huang D, Lai C, Cheng M, et al. The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment. Appl Microbiol Biotechnol 2017; 101: 3919-3928.
16. Badiefar L, Yakhchali B, Rodriguez-Couto S, Veloso A, García-Arenzana JM, Matsumura Y, et al. Biodegradation of bisphenol A by the newly-isolated Enterobacter gergoviae strain BYK-7 enhanced using genetic manipulation. RSC Adv 2015; 5: 29563-29572.
17. Kang J-H, Ri N, Kondo F. Streptomyces sp. strain isolated from river water has high bisphenol A degradability. Lett Appl Microbiol 2004; 39: 178-180.
18. Jia Y, Eltoukhy A, Wang J, Li X, Hlaing TS, Aung MM, et al. Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase. Int J Mol Sci 2020; 21: 3588.
19. Thathola P, Agnihotri V, Pandey A, Upadhyay SK. Biodegradation of bisphenol A using psychrotolerant bacterial strain Pseudomonas palleroniana GBPI_508. Arch Microbiol 2022; 204: 272.
20. Fini EH, Ayat S, Pahlavan F (2021). Phenolic compounds in the built environment. In: Badria FA. Ed, Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications, 1st ed. IntechOpen, London, UK, pp 1-23.
21. Yordanova G, Godjevargova T, Nenkova R, Ivanova D. Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus Awamori and Trichosporon Cutaneum. Biotechnol Biotechnol Equip 2013; 27: 3681-3688.
22. Ike M, Jin CS, Fujita M. Biodegradation of bisphenol A in the aquatic environment. Water Sci Technol 2000; 42: 31-38.
23. Piazzoli A, Breider F, Aquillon CG, Antonelli M, von Gunten U. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination. Water Res 2018; 135: 311-321.
24. Singh BR, Al-Khedhairy AA, Alarifi SA, Musarrat J. Regulatory elements in the 5'region of 16SrRNA gene of Bacillus sp. strain SJ101. Bioinformation 2009; 3: 375-380.
25. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38: 3022-3027.
26. Cao B, Nagarajan K, Loh K-C. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 2009; 85: 207-228.
27. Kamaraj M, Sivaraj R, Venckatesh R. Biodegradation of bisphenol A by the tolerant bacterial species isolated from coastal regions of Chennai, Tamil Nadu, India. Int Biodeterior Biodegradation 2014; 93: 216-222.
28. Vijayalakshmi V, Senthilkumar P, Mophin-Kani K, Sivamani S, Sivarajasekar N, Vasantharaj S. Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: Kinetic modeling and process optimization. J Radiat Res Appl Sci 2018; 11: 56-65.
29. Heidari H, Sedighi M, Zamir SM, Shojaosadati SA. Bisphenol A degradation by Ralstonia eutropha in the absence and presence of phenol. Int Biodeterior Biodegradation 2017; 119: 37-42.
30. Fouda A. Biodegradation of Bisphenol A by some bacterial species and significance role of plasmids. Int J Adv Res Biol Sci 2015; 2: 93-108.
31. Soghandi B, Salimi F. Study on amendment of rapeseed meal, soybean meal, and NPK fertilizer as biostimulants in bioremediation of diesel-contaminated soil by autochthonous microorganisms. Soil Sediment Contam 2023; 32: 1-21.
Files | ||
Issue | Vol 15 No 6 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v15i6.14133 | |
Keywords | ||
Biodegradation; Bisphenol A; Pseudomonas; Soil |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |