Original Article

The emergence of carbapenem-resistance and New Delhi metallo-β-lactamase-1 (blaNDM-1) among Salmonella spp. in Kerman, Iran

Abstract

Background and Objectives: Salmonella species (spp) are the most prevalent zoonotic pathogens that cause outbreaks of gastroenteritis worldwide. Therefore evaluation of the profile of antibiotic resistance, virulence factors, and plasmid replicon types in these bacteria is necessary to control and prevent the spread of potentially pathogenic and drug-resistant strains.
Materials and Methods: This study was performed on 39 Salmonella spp. The antibacterial susceptibility of isolates to various antibiotic agents was determined using disk diffusion test. β-lactamases (bla) including ESBLs, AmpC, MBLs, and virulence genes were detected by PCR methods. Plasmid incompatibility groups among the isolates were identified using PCR-based replicon typing (PBRT).
Results: The most prevalent virulent gene was phoP/Q (84.6%). slyA, sopB, and stn were identified in 79.4% (n=31), 69.2% (n=27), and 2.5% (n=1) of the isolates, respectively. The antibiotic susceptibility testing showed that 30.7% of the isolates were ESBL-producing. blaTEM (41%; n=16) was the most frequent β-lactamase gene among the isolates followed by blaNDM-1 (15.4%; n=6), blaDHA (7.7%; n=3), and blaCTX-M (1.5%; n=1). Six different plasmid replicon types, including IncP (n=9; 23%), IncFIC (n=3; 7.70%), IncY (n=3; 7.70%), IncI1-Iγ (n=2; 5.12%), IncFIIAs (n=1; 2.56%), and IncN (n=1; 2.56%) were observed among the isolates.
Conclusion: Our study showed the emergence of carbapenem-resistant and blaNDM-1 among Salmonella spp. for the first time in Kerman, Iran. Since Salmonella spp. plays an important role in the transmission of resistance genes in livestock and humans in the food chains, so more stringent control policies are recommended to prevent the circulation of drug-resistant and potentially pathogenic strains from animals to humans.

1. Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N, Culley AI, et al. Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8. Sci Rep 2016; 6: 35617.
2. Inbaraj S, Agrawal RK, Thomas P, Mohan C, Agarwal RKS, Verma MR, et al. Antimicrobial resistance in Indian isolates of non typhoidal Salmonella of livestock, poultry and environmental origin from 1990 to 2017. Comp Immunol Microbiol Infect Dis 2022; 80: 101719.
3. Zhan Z, Xu X, Gu Z, Meng J, Wufuer X, Wang M, et al. Molecular epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonella in China, 2007–2016. Infect Drug Resist 2019; 12: 2885-2897.
4. Mechesso AF, Moon DC, Kim S-J, Song H-J, Kang HY, Na SH, et al. Nationwide surveillance on serotype distribution and antimicrobial resistance profiles of non-typhoidal Salmonella serovars isolated from food-producing animals in South Korea. Int J Food Microbiol 2020; 335: 108893.
5. Mellou K, Gkova M, Panagiotidou E, Tzani M, Sideroglou T, Mandilara G. Diversity and resistance profiles of human non-typhoidal Salmonella spp. in Greece, 2003-2020. Antibiotics (Basel) 2021; 10: 983.
6. Tängdén T, Giske CG. Global dissemination of extensively drug‐resistant carbapenemase‐producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med 2015; 277: 501-512.
7. Gonzalez-Sanz R, Herrera-Leon S, De la Fuente M, Arroyo M, Echeita MA. Emergence of extended-spectrum beta-lactamases and AmpC-type beta-lactamases in human Salmonella isolated in Spain from 2001 to 2005. J Antimicrob Chemother 2009; 64: 1181-1186.
8. Philippon A, Arlet G, Labia R, Iorga BI. Class C β-lactamases: molecular characteristics. Clin Microbiol Rev 2022; 35(3): e0015021.
9. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53: 5046-5054.
10. Pitout JDD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 2012; 3: 9.
11. Beukers AG, John MA, Davis R, Lee A, van Hal SJ. Hospital outbreak of New Delhi metallo-β-lactamase type-1 (NDM-1) in Salmonella enterica with inter-species plasmid transmission. J Hosp Infect 2021; 117: 23-27.
12. Banerjee K, Sekar P, Krishnan P, Wattam AR, Roy S, Hays JP, et al. Whole genome sequence analysis of NDM-1, CMY-4, and SHV-12 coproducing Salmonella enterica serovar Typhimurium isolated from a case of fatal burn wound infection. Infect Drug Resist 2018; 11: 2491-2495.
13. Yang L, He H, Chen Q, Wang K, Lin Y, Li P, et al. Nosocomial outbreak of carbapenemase-producing Proteus mirabilis with two novel Salmonella Genomic Island 1 variants carrying different blaNDM-1 gene copies in China. Front Microbiol 2022; 12: 800938.
14. Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother 2003; 47: 1297-1300.
15. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63: 219-228.
16. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
17. Xu Y, Zhou X, Jiang Z, Qi Y, Ed-dra A, Yue M. Epidemiological investigation and antimicrobial resistance profiles of Salmonella isolated from breeder chicken Hatcheries in Henan, China. Front Cell Infect Microbiol 2020; 10: 497.
18. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002; 40: 2153-2162.
19. Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-Neyestanaki D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist 2018; 12: 45-54.
20. Pahlavanzadeh F, Kalantar-Neyestanaki D, Motamedifar M, Mansouri S. In vitro reducing effect of cloxacillin on minimum inhibitory concentrations to imipenem, meropenem, ceftazidime, and cefepime in carbapenem-resistant Pseudomonas aeruginosa isolates. Yale J Biol Med 2020; 93: 29-34.
21. Aslani S, Kiaei S, Afgar A, Morones-Ramírez JR, Aratboni HA, Faridi A, et al. Determination of incompatibility group plasmids and copy number of the blaNDM-1 gene in carbapenem-resistant Klebsiella pneumoniae strains recovered from different hospitals in Kerman, Iran. J Med Microbiol 2021; 70: 10.1099/jmm.0.001361.
22. Abou Elez RMM, Elsohaby I, El-Gazzar N, Tolba HMN, Abdelfatah EN, Abdellatif SS, et al. Antimicrobial resistance of Salmonella Enteritidis and Salmonella Typhimurium isolated from laying hens, table eggs, and humans with respect to antimicrobial activity of biosynthesized silver nanoparticles. Animals (Basel) 2021; 11: 3554.
23. Shaigan nia S, Rostami F, Safarpour dehkordi S, Rahimi E, Yahaghi E, Khodaverdi Darian E, et al. Isolation and evaluation virulence factors of Salmonella Typhimurium and Salmonella Enteritidis in milk and dairy products. Iran J Med Microbiol 2014; 8: 54-61.
24. Arkali A, Çetinkaya B. Molecular identification and antibiotic resistance profiling of Salmonella species isolated from chickens in eastern Turkey. BMC Vet Res 2020; 16: 205.
25. Caffrey N, Agunos A, Gow S, Liljebjelke K, Mainali C, Checkley SL. Salmonella spp. prevalence and antimicrobial resistance in broiler chicken and turkey flocks in Canada from 2013 to 2018. Zoonoses Public Health 2021; 68: 719-736.
26. Bahramianfard H, Derakhshandeh A, Naziri Z, Khaltabadi Farahani R. Prevalence, virulence factor and antimicrobial resistance analysis of Salmonella Enteritidis from poultry and egg samples in Iran. BMC Vet Res 2021; 17: 196.
27. Awad A, Gwida M, Khalifa E, Sadat A. Phenotypes, antibacterial-resistant profile, and virulence-associated genes of Salmonella serovars isolated from retail chicken meat in Egypt. Vet World 2020; 13: 440-445.
28. Kanaan MHG, Khalil ZK, Khashan HT, Ghasemian A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol 2022; 22: 279.
29. Zeng Y-B, Xiong L-G, Tan M-F, Li H-Q, Yan H, Zhang L, et al. Prevalence and antimicrobial resistance of Salmonella in pork, chicken, and duck from retail markets of China. Foodborne Pathog Dis 2019; 16: 339-345.
30. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular epidemiology and risk factors of ventilator-associated pneumonia infection caused by carbapenem-resistant enterobacteriaceae. Front Pharmacol 2019; 10: 262.
31. Adel WA, Ahmed AM, Hegazy Y, Torky HA, Shimamoto T. High prevalence of ESBL and plasmid-mediated quinolone resistance genes in Salmonella enterica isolated from retail meats and slaughterhouses in Egypt. Antibiotics (Basel) 2021; 10: 881.
32. Akinyemi KO, Al-Khafaji NSK, Al-Alaq FT, Fakorede CO, Al-Dahmoshi HOM, Iwalokun BA, et al. Extended-spectrum beta-lactamases encoding genes among Salmonella enterica serovar typhi isolates in patients with typhoid fever from four academic medical centers in Lagos, Nigeria. Rev Invest Clin 2022; 74: 165-171.
33. Qiao J, Zhang Q, Alali WQ, Wang J, Meng L, Xiao Y, et al. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. Int J Food Microbiol 2017; 248: 72-81.
34. Fischer J, Rodríguez I, Schmoger S, Friese A, Roesler U, Helmuth R, et al. Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. J Antimicrob Chemother 2013; 68: 478-480.
35. Kadry M, Nader SM, Elshafiee EA, Ahmed ZS. Molecular characterization of ESBL and carbapenenemase producing Salmonella spp. Isolated from chicken and its public health importance. Pakistan J Zoo 2021; 53: 2289-2294.
36. Huang J, Wang M, Ding H, Ye M, Hu F, Guo Q, et al. New Delhi metallo-β-lactamase-1 in carbapenem-resistant Salmonella strain, China. Emerg Infect Dis 2013; 19: 2049-2051.
37. Day MR, Meunier D, Doumith M, De Pinna E, Woodford N, Hopkins KL. Carbapenemase-producing Salmonella enterica isolates in the UK. J Antimicrob Chemother 2015; 70: 2165-2167.
38. Sarkar A, Pazhani GP, Chowdhury G, Ghosh A, Ramamurthy T. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg. Front Microbiol 2015; 6: 969.
39. Savard P, Gopinath R, Zhu W, Kitchel B, Rasheed JK, Tekle T, et al. First NDM-positive Salmonella spp. strain identified in the United States. Antimicrob Agents Chemother 2011; 55: 5957-5958.
40. Hai D, Yin X, Lu Z, Lv F, Zhao H, Bie X. Occurrence, drug resistance, and virulence genes of Salmonella isolated from chicken and eggs. Food Control 2020; 113: 107109.
41. Wang W, Chen J, Shao X, Huang P, Zha J, Ye Y. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Sci Nutr 2021; 9: 4701-4710.
42. Takaichi M, Osawa K, Nomoto R, Nakanishi N, Kameoka M, Miura M, et al. Antibiotic resistance in non-typhoidal Salmonella enterica strains isolated from chicken meat in Indonesia. Pathogens 2022; 11: 543.
43. Webber B, Borges KA, Furian TQ, Rizzo NN, Tondo EC, Santos LRD, et al. Detection of virulence genes in Salmonella heidelberg isolated from chicken carcasses. Rev Inst Med Trop Sao Paulo 2019; 61: e36.
44. Johnson TJ, Nolan LK. Plasmid replicon typing. Methods Mol Biol 2009; 551: 27-35.
45. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19: 588-595.
46. Hadziabdic S, Fischer J, Malorny B, Borowiak M, Guerra B, Kaesbohrer A, et al. In vivo transfer and microevolution of avian native IncA/C2blaNDM-1-carrying plasmid pRH-1238 during a broiler chicken infection study. Antimicrob Agents Chemother 2018; 62(4): e02128-17.
47. Ingti B, Paul D, Maurya AP, Bora D, Chanda DD, Chakravarty A, et al. Occurrence of blaDHA-1 mediated cephalosporin resistance in Escherichia coli and their transcriptional response against cephalosporin stress: a report from India. Ann Clin Microbiol Antimicrob 2017; 16: 13.
48. Mohamed ER, Ali MY, Waly NGFM, Halby HM, El-Baky RMA. The Inc FII plasmid and its contribution in the transmission of blaNDM-1 and blaKPC-2 in Klebsiella pneumoniae in Egypt. Antibiotics (Basel) 2019; 8: 266.
49. Li R, Xie M, Liu L, Huang Y, Wu X, Wang Z, et al. Characterisation of a cointegrate plasmid harbouring blaNDM-1 in a clinical Salmonella Lomita strain. Int J Antimicrob Agents 2020; 55: 105817.
50. Kocsis E, Gužvinec M, Butić I, Krešić S, Crnek SŠ, Tambić A, et al. blaNDM-1 carriage on IncR plasmid in Enterobacteriaceae strains. Microb Drug Resist 2016; 22: 123-128.
51. Popowska M, Krawczyk-Balska A. Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol 2013; 4: 44.
52. Zurfluh K, Glier M, Hächler H, Stephan R. Replicon typing of plasmids carrying blaCTX-M-15 among Enterobacteriaceae isolated at the environment, livestock and human interface. Sci Total Environ 2015; 521-522: 75-78.
53. Pilla G, Tang CM. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol 2018; 16: 484-495.
Files
IssueVol 16 No 1 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v16i1.14868
Keywords
Salmonella; Beta-lactamase genes; Virulence factors; New Delhi metallo-beta-lactamase-1 (NDM-1)

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Dehdashti S, Mohseni P, Ghanbarpour R, Aslani S, Moradiyan M-S, Kalantar-Neyestanaki D. The emergence of carbapenem-resistance and New Delhi metallo-β-lactamase-1 (blaNDM-1) among Salmonella spp. in Kerman, Iran. Iran J Microbiol. 2024;16(1):29-38.