Early detection of a possible multidrug-resistant Acinetobacter baumannii outbreak in the local hospital setting by using random amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR), oxacillinase gene profiles, and antibiograms
Abstract
Background and Objectives: Detecting the source of a potential outbreak of multidrug resistant (MDR) Acinetobacter baumannii is necessary to be investigated. This study aimed to detect the possibility of A. baumannii outbreak in a hospital setting using a combination of random amplified polymorphism DNA- polymerase chain reaction (RAPD-PCR), antibiograms, and the presence of oxacillinase genes.
Materials and Methods: The antibiogram of 31 clinical isolates and six environmental isolates of A. baumannii were determined by Vitek® 2 Compact. Oxacillinase genes (OXA-23, -24, -51, and -58) were detected by PCR, and RAPD-PCR was conducted using DAF-4 and ERIC-2 primers. The Similarity Index and dendrogram were generated using GelJ v2.3 software.
Results: The antibiograms showed that all MDR A. baumannii isolates has very limited susceptibility to cephalosporins, but mostly susceptible to tigecycline. All isolates were positive for blaOXA-51-like gene, thirty-two of 37 total isolates (86.5%) were positive for blaOXA-23-like gene, and none were positive for blaOXA-24-like and blaOXA-58-like genes. RAPD-PCR showed that the DAF-4 primer on average had more band visualization and lower Similarity Index’s variation compared to the ERIC-2. The discriminatory power of DAF-4 was 0.906. There was a significant correlation between the DAF-4 dendrogram pattern with the antibiogram (r=0.494, p<0.001) and the presence of blaOXA-23-like gene (r=0.634, p<0.001) from all ICU A isolates. Six out of fourteen ICU A isolates belonged to the same cluster with >95% Similarity Index, while one clinical isolate having an identical dendrogram and antibiogram pattern with an environmental isolate within this cluster.
Conclusion: There is a high probability of MDR A. baumannii outbreak within ICU A detected by multiple analysis of RAPD-PCR, antibiogram and the blaOXA-23-like gene profiles. This combinatorial approach is conceivable to mitigate possible outbreak situations of A. baumannii in the local hospital without sophisticated microbiology laboratory.
2. World Health Organization (2020). Global Antimicrobial Resistance Surveillance System (GLASS) Report. Geneva: World Health Organization (WHO).
3. Vashist J, Tiwari V, Das R, Kapil A, Rajeswari MR. Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Indian J Med Res 2011; 133: 332-338.
4. Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48: 6987-6998.
5. Alrahmany D, Omar AF, Harb G, El Nekidy WS, Ghazi IM. Acinetobacter baumannii infections in Hospitalized patients, treatment outcomes. Antibiotics (Basel) 2021; 10: 630.
6. John AO, Paul H, Vijayakumar S, Anandan S, Sudarsan T, Abraham OC, et al. Mortality from acinetobacter infections as compared to other infections among critically ill patients in South India: A prospective cohort study. Indian J Med Microbiol 2020; 38: 24-31.
7. Cornejo-Juárez P, Cevallos MA, Castro-Jaimes S, Castillo-Ramìrez S, Velázquez-Acosta C, Martìnez-Oliva D, et al. High mortality in an outbreak of multidrug resistant Acinetobacter baumannii infection introduced to an oncological hospital by a patient transferred from a general hospital. PLoS One 2020; 15 (7): e0234684.
8. Appaneal HJ, Lopes VV, LaPlante KL, Caffrey AR. Treatment, clinical outcomes, and predictors of mortality among a national cohort of hospitalized patients with Stenotrophomonas maltophilia infection. Public Health 2023; 214: 73-80.
9. Yadav SK, Bhujel R, Hamal P, Mishra SK, Sharma S, Sherchand JB. Burden of multidrug-resistant Acinetobacter baumannii infection in hospitalized patients in a tertiary care hospital of Nepal. Infect Drug Resist 2020; 13: 725-732.
10. Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines (Basel) 2021; 9: 570.
11. Huang H, Chen B, Liu G, Ran J, Lian X, Huang X, et al. A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect Dis 2018; 18: 11.
12. Alotaibi T, Abuhaimed A, Alshahrani M, Albdelhady A, Almubarak Y, Almasari O. Prevalence of multidrug-resistant Acinetobacter baumannii in a critical care setting: A tertiary teaching hospital experience. SAGE Open Med 2021; 9: 20503121211001144.
13. Hafiz TA, Alghamdi SS, Mubaraki MA, Alghamdi SSM, Alothaybi A, Aldawood E, et al. A two-year retrospective study of multidrug-resistant Acinetobacter baumannii respiratory infections in critically Ill patients: Clinical and microbiological findings. J Infect Public Health 2023; 16: 313-319.
14. Čiginskienė A, Dambrauskienė A, Rello J, Adukauskienė D. Ventilator-associated pneumonia due to drug-resistant Acinetobacter baumannii: Risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality. Medicina (Kaunas) 2019; 55: 49.
15. McKay SL, Vlachos N, Daniels JB, Albrecht VS, Stevens VA, Rasheed JK, et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in the United States, 2013-2017. Microb Drug Resist 2022; 28: 645-653.
16. El-Kazzaz W, Metwally L, Yahia R, Al-Harbi N, El-Taher A, Hetta HF. Antibiotics antibiogram, prevalence of OXA carbapenemase encoding genes, and RAPD-Genotyping of multidrug-resistant Acinetobacter baumannii incriminated in hidden community-acquired infections. Antibiotics (Basel) 2020; 9: 603.
17. Bulens SN, Yi SH, Walters MS, Jacob JT, Bower C, Reno J, et al. Carbapenem-nonsusceptible Acinetobacter baumannii, 8 US metropolitan areas, 2012-2015. Emerg Infect Dis 2018; 24: 727-734.
18. Weinberg SE, Villedieu A, Bagdasarian N, Karah N, Teare L, Elamin WF. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infect Prev Pract 2020; 2: 100077.
19. Casaroto E, Generoso JR, Tofaneto BM, Bariani LM, Auler MA, Xavier N, et al. Hand hygiene performance in an intensive care unit before and during the COVID-19 pandemic. Am J Infect Control 2022; 50: 585-587.
20. Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist 2018; 11: 1249-1260.
21. Kamolvit W, Sidjabat HE, Paterson DL. Molecular Epidemiology and mechanisms of carbapenem resistance of Acinetobacter spp. In Asia and Oceania. Microb Drug Resist 2015; 21: 424-434.
22. Rafei R, Kempf M, Eveillard M, Dabboussi F, Hamze M, Joly-Guillou M-L. Current molecular methods in epidemiological typing of Acinetobacter baumannii. Future Microbiol 2014; 9: 1179-1194.
23. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-Lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49: 202-208.
24. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27: 351-353.
25. D'Arezzo S, Capone A, Petrosillo N, Visca P; GRAB; Ballardini M, et al. Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types I and II in Rome (Italy). Clin Microbiol Infect 2009; 15: 347-357.
26. Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, et al. GelJ -- a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 2015; 16: 270.
27. De Wolf H, Blust R, Backeljau T. The use of RAPD in ecotoxicology. Mutat Res 2004; 566: 249-262.
28. Gómez RF, Castillo A, Chávez-Vivas M. Characterization of multidrug-resistant Acinetobacter ssp. strains isolated from medical intensive care units in Cali - Colombia. Colomb Med (Cali) 2017; 48: 183-190.
29. Zhou H, Yao Y, Zhu B, Ren D, Yang Q, Fu Y, et al. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia: A retrospective study from a Chinese hospital. Medicine (Baltimore) 2019; 98(13): e14937.
30. Alavi-Moghaddam M, Dolati M, Javadi A, Saki BG, Karami-Zarandi M, Khoshnood S. Molecular detection of oxacillinase genes and typing of clinical isolates of Acinetobacter baumannii in Tehran, Iran. J Acute Dis 2020; 9: 33-39.
31. Şimşek M, Demir C. Determination of colistin and tigecycline resistance profile of Acinetobacter Baumannii strains from different clinical samples in a territory hospital in Turkey. J Health Sci Med Res 2020; 38: 81-91.
32. Anggraini D, Santosaningsih D, Saharman YR, Endraswari PD, Cahyarini C, Saptawati L, et al. Distribution of carbapenemase genes among carbapenem-non-susceptible Acinetobacter baumanii blood isolates in Indonesia: A Multicenter Study. Antibiotics (Basel) 2022; 11: 366.
33. Ezeddin MO, Nasrul E, Alia E. Prevalensi dan Pola sensitivitas antibiotik Acinetobacter baumannii di RSUP. Dr. M. Djamil Padang. Maj Kedokt Andalas 2022; 45: 10-16.
34. Feng D-Y, Zhou J-X, Li X, Wu W-B, Zhou Y-Q, Zhang T-T. Differentiation between Acinetobacter Baumannii colonization and infection and the clinical outcome prediction by infection in lower respiratory tract. Infect Drug Resist 2022; 15: 5401-5409.
35. Abo safe F, Salah N, Rashed M, Saad S. Susceptibility of aminoglycoside resistant Acinetobacter baumannii to antibiotic combinations. Egypt J Microbiol 2019; 54: 137-147.
36. Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics (Basel) 2020; 9: 119.
37. Kurihara MNL, Sales RO, Silva KED, Maciel WG, Simionatto S. Multidrug-resistant Acinetobacter baumannii outbreaks: a global problem in healthcare settings. Rev Soc Bras Med Trop 2020; 53: e20200248.
38. Nirwati H, Hakim MS, Darma S, Mustafa M, Nuryastuti T. Detection of blaoxa genes and identification of biofilm-producing capacity of Acinetobacter baumannii in a tertiary teaching hospital, Klaten, Indonesia. Med J Malaysia 2018; 73: 291-296.
39. Anggraini D, Kemal RA, Hadi U, Kuntaman K. The susceptibility pattern and distribution of blaOXA-23 genes of clinical isolate Acinetobacter baumannii in a tertiary hospital, Indonesia. J Infect Dev Ctries 2022; 16: 821-826.
40. Handal R, Qunibi L, Sahouri I, Juhari M, Dawodi R, Marzouqa H, et al. Characterization of carbapenem-resistant Acinetobacter baumannii strains isolated from hospitalized patients in palestine. Int J Microbiol 2017: 2017: 8012104.
41. Fitzpatrick MA, Ozer EA, Hauser AR. Utility of whole-Genome sequencing in characterizing Acinetobacter epidemiology and analyzing hospital outbreaks. J Clin Microbiol 2016; 54: 593-612.
42. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007; 13 Suppl 3: 1-46.
43. Sherry NL, Porter JL, Seemann T, Watkins A, Stinear TP, Howden BP. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol 2013; 51: 1396-1401.
44. Towner KJ. Acinetobacter: an old friend, but a new enemy. J Hosp Infect 2009; 73: 355-363.
45. Obeidat N, Jawdat F, Al-Bakri AG, Shehabi AA. Major biologic characteristics of Acinetobacter baumannii isolates from hospital environmental and patients’ respiratory tract sources. Am J Infect Control 2014; 42: 401-414.
Files | ||
Issue | Vol 15 No 5 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v15i5.13870 | |
Keywords | ||
Acinetobacter baumannii; Antibiogram; Hospital; Outbreak; Oxacillinase; Random amplified polymorphic DNA |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |