Original Article

Glucomannan enhanced the macrophage activity in exposure to methicillin-resistant Staphylococcus aureus (MRSA): in-vitro study


Background and Objectives: The increasing number of methicillin-resistant Staphylococcus aureus persuade the need for preventive measures. Glucomannan is a polysaccharide choice for developing immunological strategies. This study aimed to investigate changes in gene expression and phagocytic activity of macrophage cells in the presence of glucomannan.
Materials and Methods: The effect of different concentrations of glucomannan (25, 50, and 100 µg/mL) on the phagocytic activity of macrophage cells was measured using the colony count method. The expression of Tumor Necrosis Factor-alpha (TNF-α) and Inducible Nitric Oxide Synthase (iNOS) genes was evaluated by Real-Time PCR.
Results: The concentrations of glucomannan significantly reduced the bacterial Colony-Forming Unit (CFU) and increased the phagocytic activity of macrophage cells. The maximum effect of glucomannan on iNOS and TNF-Α genes expression was 100 µg/mL.
Conclusion: Glucomannan should be considered an adjuvant that stimulates the immune system. It may increase the expression of TNF-α and iNOS genes and the phagocytic activity of macrophage cells against methicillin-resistant Staphylococcus aureus.

1. Li Z, Zhuang H, Wang G, Wang H, Dong Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: systemic review and meta-analysis. BMC Infect Dis 2021; 21: 74.
2. Kang C-I, Song J-H, Chung DR, Peck KR, Ko KS, Yeom J-S, et al. Clinical impact of methicillin resistance on outcome of patients with Staphylococcus aureus infection: a stratified analysis according to underlying diseases and sites of infection in a large prospective cohort. J Infect 2010; 61: 299-306.
3. Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 2010; 65: 2658-2665.
4. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298: 1763-1771.
5. Davis SL, Perri MB, Donabedian SM, Manierski C, Singh A, Vager D, et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 2007; 45: 1705-1711.
6. Yu Q, Nie S-P, Wang J-Q, Yin P-F, Li W-J, Xie M-Y. Polysaccharide from Ganoderma atrum induces tumor necrosis factor-α secretion via phosphoinositide 3-kinase/Akt, mitogen-activated protein kinase and nuclear factor-κB signaling pathways in RAW264. 7 cells. Int Immunopharmacol 2012; 14: 362-368.
7. Zhao G, Wu H, Jiang K, Rui G, Zhu Z, Qiu C, et al. IFN-τ inhibits S. aureus-induced inflammation by suppressing the activation of NF-κB and MAPKs in RAW 264.7 cells and mice with pneumonia. Int Immunopharmacol 2016; 35: 332-340.
8. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010; 20: 87-103.
9. Salvo F, Polimeni G, Moretti U, Conforti A, Leone R, Leoni O, et al. Adverse drug reactions related to amoxicillin alone and in association with clavulanic acid: data from spontaneous reporting in Italy. J Antimicrob Chemother 2007; 60: 121-126.
10. Webb JL, Harvey MW, Holden DW, Evans TJ. Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 2001; 69: 6391-6400.
11. Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte‐dependent resistance of zebrafish to non‐host specialized pathogens. Cell Microbiol 2008; 10: 2312-2325.
12. Tester R, Al-Ghazzewi FH. Role of glucomannans in immunology. J Pharm Pharm Sci 2017; 20: 97-114.
13. Francis JS, Doherty MC, Lopatin U, Johnston CP, Sinha G, Ross T, et al. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis 2005; 40: 100-107.
14. Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 2005; 352: 1445-1453.
15. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109: 309-318.
16. Hamman JH. Composition and applications of Aloe vera leaf gel. Molecules 2008; 13: 1599-1616.
17. Alhassan Mohammed H, Saboor-Yaraghi AA, Vahedi H, Panahi G, Hemmasi G, Yekaninejad MS, et al. Immunotherapeutic Effects of β-D mannuronic acid on IL-4, GATA3, IL-17 and RORC gene expression in the pbmc of patients with inflammatory bowel diseases. Iran J Allergy Asthma Immunol 2018: 17: 308-317.
18. Yang L-C, Hsieh C-C, Lin W-C. Characterization and immunomodulatory activity of rice hull polysaccharides. Carbohydr Polym 2015; 124 :150-156.
19. Salim T, Sershen CL, May EE. Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One 2016; 11(6): e0153289.
20. Magez S, Radwanska M, Drennan M, Fick L, Baral TN, Allie N, et al. Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing. J Infect Dis 2007; 196: 954-962.
21. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 2007; 8: 766-775.
22. Stern AM, Zhu J. An introduction to nitric oxide sensing and response in bacteria. Adv Appl Microbiol 2014; 87: 187-220.
23. Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012; 3: 271-279.
24. Bogdan C, Röllinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000; 173: 17-26.
25. Xue Q, Yan Y, Zhang R, Xiong H. Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci 2018; 19: 3805.
26. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323-350.
27. Cai H-L, Huang X-J, Nie S-P, Xie M-Y, Phillips GO, Cui SW. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part III–Immunomodulatory activity in vitro. Bioact Carbohydr Diet Fibre 2015; 5: 99-105.
28. Onishi N, Kawamoto S, Suzuki H, Santo H, Aki T, Shigeta S, et al. Dietary pulverized konjac glucomannan suppresses scratching behavior and skin inflammatory immune responses in NC/Nga mice. Int Arch Allergy Immunol 2007; 144: 95-104.
29. He T-B, Huang Y-P, Yang L, Liu T-T, Gong W-Y, Wang X-J, et al. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale. Int J Biol Macromol 2016; 83: 34-41.
30. Gurusmatika S, Nishi K, Harmayani E, Pranoto Y, Sugahara T. Immunomodulatory activity of octenyl succinic anhydride modified Porang (Amorphophallus oncophyllus) glucomannan on mouse macrophage-like J774. 1 cells and mouse primary peritoneal macrophages. Molecules 2017; 22: 1187.
31. Gan J, Dou Y, Li Y, Wang Z, Wang L, Liu S, et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors. Biomaterials 2018; 178: 95-108.
IssueVol 15 No 4 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v15i4.13510
Glucomannan; Macrophage; Methicillin-resistant Staphylococcus aureus; Inducible nitric oxide synthase; Tumor necrosis factor-alpha

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Khanzadeh Tehrani M, Yazdi MH, Pourmand MR. Glucomannan enhanced the macrophage activity in exposure to methicillin-resistant Staphylococcus aureus (MRSA): in-vitro study. Iran J Microbiol. 2023;15(4):557-564.