Original Article

Inhibition of bacterial adhesion and anti-biofilm effects of Bacillus cereus and Serratia nematodiphila biosurfactants against Staphylococcus aureus and Pseudomonas aeruginosa

Abstract

Background and Objectives: Biosurfactants are amphiphilic surface-active agents that mainly produced by various microorganisms. In this study, the anti-biofilm and inhibition of bacterial adhesion activities of two bacterial biosurfactants were investigated.
Materials and Methods: After extraction and evaluation of Bacillus cereus and Serratia nematodiphila biosurfctants, inhibition of bacterial adhesion and anti-biofilm effects of them on Staphylococcus aureus and Pseudomonas aeruginosa were determined.
Results: On average, the synergistic effect of two bacterial biosurfactants, caused about 60% decrease in adhesion and about 80% decrease in biofilm formation of S. aureus and P. aeruginosa.
Conclusion: The results of this study showed that combination of B. cereus and S. nematodiphila biosurfactants would increase the potential of attachment inhibition and biofilm eradication with very low toxicity.

1. van Wolferen M, Orell A, Albers SV. Archaeal biofilm formation. Nat Rev Microbiol 2018;16:699-713.
2. Al-Kafaween MA, Mohd Hilmi AB, Al-Jamal HA, Elsahoryi NA, Jaffar NB, Zahri MK. Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian trigona honey in vitro demonstrated downregulation of virulence factor. Iran J Biotechnol 2020; 18(4): e2542.
3. Al-kafaween MA, Hilmi AB. Evaluation of the effect of different growth media and incubation time on the suitability of biofilm formation by Pseudomonas aeruginosa and Streptococcus pyogenes. Appl Environ Biotechnol 2022; 6: 19-26.
4. Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L,et al. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep 2020;10(1):9390.
5. Liu J, Madec JY, Bousquet-Mélou A, Haenni M, Ferran AA. Destruction of Staphylococcus aureus biofilms by combining an antibiotic with subtilisin A or calcium gluconate. Sci Rep 2021;11(1):6225.
6. Al-kafaween MA, Abu-Sini M, Al-Jamal HA. Antibiotic Susceptibility and Differential expression of virulence genes in Staphylococcus aureus. Appl Environ Biotechnol 2022; 7: 6-15.
7. Subhadra B, Kim DH, Woo K, Surendran S, Choi CH. Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials (Basel) 2018; 11: 1676
8. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010;87:427-44.
9. Al-kafaween MA, Hilmi AB, Jaffar N, Al-Jamal HA, Zahri MK, Jibril FI. Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J Biol Sci 2020; 13: 69-76.
10. Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, et al. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 2019; 103: 4565-4574.
11. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 2006; 49(1): 79-86.
12. Berry JD, Neeson MJ, Dagastine RR, Chan DY, Tabor RF. Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci 2015; 454: 226-237.
13. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 2011; 11: 29.
14. Durham-Colleran MW, Verhoeven AB, van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 2010;59:457-65.
15. Noumi E, Snoussi M, Merghni A, Nazzaro F, Quindós G, Akdamar et al. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathog 2017;109:169-176.
16. Al-kafaween MA, Mohd Hilmi AB, Al-Jamal N, Jaffar N, Al-Sayyed H, Zahri MK. Effects of selected Malaysian Kelulut honey on biofilm formation and the Gene expression profile of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Jordan J Pharm Sci 2021; 14: 9-26.
17. Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 2021;8:28-56.
18. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc 2018; 81: 7-11.
19. Sana S, Datta S, Biswas D, Sengupta D. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim Biophys Acta Biomembr 2018;1860:579-585.
20. Abdollahi S, Tofighi Z, Babaee T, Shamsi M, Rahimzadeh G, Rezvanifar H, et al. Evaluation of anti-oxidant and anti-biofilm activities of biogenic surfactants derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iran J Pharm Res 2020; 19: 115-126.
21. Karlapudi AP, Venkateswarulu TC, Srirama K, Kota RK, Mikkili I, Kodali VP. Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J King Saud Univ Sci 2020; 32: 223-227.
22. Makkar RS, Cameotra SS. Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 1998; 20: 48-52.
23. Pardhi DS, Panchal RR, Raval VH, Joshi RG, Poczai P, Almalki WH, et al. Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 2022: 13: 982603.
24. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 1171-1175.
25. Bonmatin J-M, Laprévote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 2003; 6: 541-556.
26. Chen ML, Penfold J, Thomas RK, Smyth TJ, Perfumo A, Marchant R, et al. Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 2010; 26: 17958-17968.
27. McLandsborough L, Rodriguez A, Pérez-Conesa D, Weiss J. Biofilms: at the interface between biophysics and microbiology. Food Biophys 2006; 1: 94-114.
28. Zhu Y, Weiss EC, Otto M, Fey PD, Smeltzer MS, Somerville GA. Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infect Immun 2007; 75: 4219-4226.
Files
IssueVol 15 No 3 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v15i3.12903
Keywords
Bacterial adhesion; Biofilms; Bacillus cereus; Surface-active agents; Staphylococcus aureus; Pseudomonas aeruginosa

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Keyhanian A, Mohammadimehr M, Nojoomi F, Naghoosi H, Shakouri Khomartash M, Chamanara M. Inhibition of bacterial adhesion and anti-biofilm effects of Bacillus cereus and Serratia nematodiphila biosurfactants against Staphylococcus aureus and Pseudomonas aeruginosa. Iran J Microbiol. 2023;15(3):425-432.