High burden of MDR, XDR, PDR, and MBL producing Gram negative bacteria causing infections in Kermanshah health centers during 2019-2020
Abstract
Background and Objectives: Microorganisms producing Metallo-Beta-Lactamase (MBL) are a threat and cause of concern as they have become one of the most feared resistance mechanisms. This study was designed to explore the prevalence of MBL production in clinical isolates of Gram negative bacteria using phenotypic MBL detection.
Materials and Methods: A total of 248 isolates were collected from various clinical samples and were evaluated for carbapenem resistance and MBL production. All strains were screened for MBL production using Double Disk Confirmatory Test (DDCT).
Results: The results of screening for MBL production using phenotypic disk diffusion method showed that in the 85 isolates were carbapenemase positive; including, 10 (16.1%) Klebsiella pneumoniae, 9 (14.5%) Escherichia coli, 58 (93.6%) Acinetobacter baumannii, and 8 (12.9%) Pseudomonas aeruginosa isolates. Also, 83 (97.6) Carbapenemase-producing isolates were resistant to at least four classes of antimicrobials (MDR).
Conclusion: A. baumannii was the most common carbapenem resistant bacterium in medical centers in Kermanshah. Significant multiple drug resistance (MDR) incidence was observed compared to different classes of antibiotics.
2. Giaccari LG, Pace MC, Passavanti MB, Gargano F, Aurilio C, Sansone P. Ceftolozane/Tazobactam for resistant drugs Pseudomonas aeruginosa respiratory infections: a systematic Literature review of the Real-World Evidence. Life (Basel) 2021; 11: 474.
3. Shaker OA, Gomaa HE, ElMasry SA, Halim RMA, Abdelrahman AH, Kamal JS. Evaluation of combined use of Temocillin disk and Mastdisks inhibitor combination set against polymerase chain reaction for detection of carbapenem-resistant Enterobacteriaceae. Open Access Maced J Med Sci 2018; 6: 242-247.
4. Nordmann P, Poirel L. Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2013; 68: 487-489.
5. Deldar Abad Paskeh M, Mehdipour Moghaddam MJ, Salehi Z. Prevalence of plasmid-encoded carbapenemases in multi-drug resistant Escherichia coli from patients with urinary tract infection in northern Iran. Iran J Basic Med Sci 2020; 23: 586-593.
6. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54: 969-976.
7. Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 2011; 65: 455-478.
8. Bourafa N, Chaalal W, Bakour S, Lalaoui R, Boutefnouchet N, Diene SM, et al. Molecular characterization of carbapenem-resistant Gram-negative bacilli clinical isolates in Algeria. Infect Drug Resist 2018;11: 735-742.
9. Workneh M, Yee R, Simner PJ. Phenotypic methods for detection of carbapenemase production in carbapenem-resistant organisms: what method should your laboratory choose? Clin Microbiol Newsl 2019; 41: 11-22.
10. Hu W, Li M, Lu W, Guo S, Li J. Evaluation of MASTDISCS combi Carba plus for the identification of metallo-β-lactamases, KPC and OXA-48 carbapenemase genes in Enterobacteriaceae clinical isolates. Lett Appl Microbiol 2020; 70: 42-47.
11. Owlia P, Saderi H, Karimi Z, Akhavi Rad SMB, Bahar MA. Phenotypic detection of Metallo-beta-Lactamase producing Pseudomonas aeruginosa strains isolated from burned patients. Iran J Pathol 2008; 3: 20-25.
12. Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, et al. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11: 9476.
13. Shokri D, Rabbani Khorasgani M, Fatemi SM, Soleimani-Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbiol 2017; 66: 402-411.
14. Haji SH, Aka STH, Ali FA. Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS One 2021; 16(11): e0259005.
15. Makharita RR, El-Kholy I, Hetta HF, Abdelaziz MH, Hagagy FI, Ahmed AA, et al. Antibiogram and genetic characterization of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections. Infect Drug Resist 2020; 13: 3991-4002.
16. Jin C, Zhou F, Cui Q, Qiang J, An C. Molecular characteristics of carbapenem-resistant Enterobacter cloacae in a tertiary Hospital in China. Infect Drug Resist 2020; 13: 1575-1581.
17. Ain NU, Iftikhar A, Bukhari SS, Abrar S, Hussain S, Haider MH, et al. High frequency and molecular epidemiology of metallo-β-lactamase-producing gram-negative bacilli in a tertiary care hospital in Lahore, Pakistan. Antimicrob Resist Infect Control 2018; 7: 128.
18. Kollenda H, Frickmann H, Ben Helal R, Wiemer DF, Naija H, El Asli MS, et al. Screening for carbapenemases in Ertapenem-resistant Enterobacteriaceae collected at a Tunisian Hospital between 2014 and 2018. Eur J Microbiol Immunol (Bp) 2019; 9: 9-13.
19. Jalalvand K, Shayanfar N, Shahcheraghi F, Amini E, Mohammadpour M, Babaheidarian P. Evaluation of phenotypic and genotypic characteristics of carbapnemases-producing Enterobacteriaceae and its prevalence in a referral Hospital in Tehran City. Iran J Pathol 2020; 15: 86-95.
20. Mahrach Y, Mourabit N, Arakrak A, Bakkali M, Laglaoui A. Phenotypic and molecular study of carbapenemase-producing Enterobacteriaceae in a regional hospital in northern Morocco. J Clin Med Sci 2019; 3: 113.
21. Codjoe FS (2016). Detection and characterisation of carbapenem-resistant gram-negative bacilli infections in Ghana: Sheffield Hallam University (United Kingdom).
22. Karabay O, Altindis M, Koroglu M, Karatuna O, Aydemir Ö A, Erdem AF. The carbapenem-resistant Enterobacteriaceae threat is growing: NDM-1 epidemic at a training hospital in Turkey. Ann Clin Microbiol Antimicrob 2016; 15: 6.
23. Fazeli H, Nazari F, Mirzaie M. The determination of metallo-beta-lactamase enzymes prevalence in Pseudomonas aeruginosa using etest and their antibiogram patterns in Kermanshah, Iran. J Kerman Univ Med Sci 2015; 22: 491-498.
24. Abiri R, Mohammadi P, Shavani N, Rezaei M. Detection and genetic characterization of metallo-β-lactamase IMP-1 and VIM-2 in Pseudomonas aeruginosa strains from different hospitals in Kermanshah, Iran. Jundishapur J Microbiol 2015; 8(9): e22582.
25. Zare A, Akya A, Nejat P. The frequency of blaVIM, blaIMP, blaKPC and blaNDM Carbapenemase genes in clinical isolates of Klebsiella Pneumoniae in Kermanshah medical centers. JSSU 2015; 23: 760-769.
26. Karuniawati A, Saharman YR, Lestari DC. Detection of carbapenemase encoding genes in Enterobacteriace, Pseudomonas aeruginosa, and Acinetobacter baumanii isolated from patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011. Acta Med Indones 2013; 45: 101-106.
27. Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrob Resist Infect Control 2019; 8: 172.
28. Akya A, Salimi A, Nomanpour B, Ahmadi K. Prevalence and clonal dissemination of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol 2015; 8(7): e20980.
29. Boral B, Unaldi Ö, Ergin A, Durmaz R, Eser ÖK ; Acinetobacter Study Group. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob 2019; 18: 19.
30. Shamim S, Abbas M, Qazi MH. Prevalence of multidrug resistant Acinetobacter baumannii in hospitalized patients in Lahore, Pakistan. Pakistan J Mol Med 2015; 2: 23-28.
31. Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, et al. Prevalence and mechanisms of carbapenem resistance in Acinetobacter baumannii: a comprehensive systematic review of cross-sectional studies from Iran. Microb Drug Resist 2020; 26: 270-283.
32. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011; 53: 60-67.
33. Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, et al. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill 2013; 18: 20489.
34. CDC. Prevention. Antibiotic resistance threats in the United States, 2019: US Department of Health and Human Services, Centres for Disease Control and Prevention 2019.
35. Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz J Infect Dis 2020; 24: 231-238.
36. Nasiri MJ, Mirsaeidi M, Mousavi SMJ, Arshadi M, Fardsanei F, Deihim B, et al. Prevalence and mechanisms of carbapenem resistance in Klebsiella pneumoniae and Escherichia coli: a systematic review and meta-analysis of cross-sectional studies from Iran. Microb Drug Resist 2020; 26: 1491-1502.
37. Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457: 61-91.
Files | ||
Issue | Vol 15 No 3 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v15i3.12896 | |
Keywords | ||
Metallo-beta-lactamase; Antibiotic resistance; Multiple drug resistance; Gram negative bacteria |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |