Therapeutic effects of probiotics and herbal medications on oxalate nephrolithiasis: a mini systematic review
Abstract
Background and Objectives: The majority of all kidney stone cases are oxalate urolithiasis with a high risk of recurrence. Beside its widespread occurrence, kidney stones are characterized by severe complications and high treatment costs. Probiotics and herbal medications could be forthcoming therapeutic interventions in the management of oxalate kidney stones.
Materials and Methods: The PubMed/MEDLINE database was searched for keywords “Oxalobacter formigenes” AND “Oxalate” OR “oxalate degradation” AND “Lactobacillus” OR “Bifidobacterium” OR “recombinant Lactobacillus” OR “Bacillus subtilis”, and “urolithiasis” AND “herbal extract”. The search returned 253 results, 38 of which were included in the review.
Results: Most of the oxalate-degrading probiotics belong to the Oxalobacter formigenes, Lactobacillus, Bifidobacterium, and Bacillus genus with a minimum dosage of 107 CFU in the form of capsules, sachets, and lyophilized powder. Oxalate concentration in media was 5-50mM with an incubation time ranging from 24h to 14 days. The majority of the studies suggested that probiotic supplementation might be useful for reducing urinary excretion of oxalate and urea and alleviation of stone formation. Different herbal extracts were used on murine models of nephrolithiasis (induced by 0.5-3% ethylene glycol) with reduction of renal inflammation and urinary parameters, and calcium oxalate crystals.
Conclusion: Several strains of probiotics and herbal extracts confer protective effects against kidney stone/nephrolithiasis, indicating their promising nature for being considered as elements of preventive / adjuvant therapeutic strategies.
2. Shin S, Srivastava A, Alli NA, Bandyopadhyay BC. Confounding risk factors and preventative measures driving nephrolithiasis global makeup. World J Nephrol 2018; 7: 129-142.
3. Mollashahee-Kohkan F, Saravani R, Khalili T, Galavi H, Sargazi S. Levisticum officinale extract triggers apoptosis and down-regulates ZNF703 gene expression in breast cancer cell lines. Rep Biochem Mol Biol 2019; 8: 119-125.
4. Tasian GE, Jemielita T, Goldfarb DS, Copelovitch L, Gerber JS, Wu Q, et al. Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol 2018; 29: 1731-1740.
5. Sargazi S, Laraib U, Er S, Rahdar A, Hassanisaadi M, Zafar MN, et al. Application of Green Gold nanoparticles in cancer therapy and diagnosis. Nanomaterials (Basel) 2022; 12: 1102.
6. Sargazi S, Moudi M, Kooshkaki O, Mirinejad S, Saravani R. Hydro-alcoholic extract of Achillea Wilhelmsii C. Koch reduces the expression of cell death-associated genes while inducing DNA damage in HeLa Cervical cancer cells. Iran J Med Sci 2020; 45: 359-367.
7. Aggarwal A, Tandon S, Singla SK, Tandon C. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris. Int Braz J Urol 2010; 36: 480-488; discussion 488, 489.
8. Mittal A, Tandon S, Singla SK, Tandon C. In vitro studies reveal antiurolithic effect of Terminalia arjuna using quantitative morphological information from computerized microscopy. Int Braz J Urol 2015; 41: 935-944.
9. Rezai M, Saravani R, Sargazi S, Moudi M, Jafari Shahroudi M, Saravani R. Achillea Wilhelmsii C. Koch hydroalcoholic extract induces apoptosis and alters LIN28B and p53 gene expression in Hela Cervical Cancer Cells. Rep Biochem Mol Biol 2019; 8: 318-325.
10. Gnyawali D, Pradhan MM, Sigdel PR, Parajuli P, Chudal S, Poudyal S, et al. Efficacy of Tamsulosin plus tadalafil versus tamsulosin as medical expulsive therapy for lower ureteric stones: a randomized controlled trial. Adv Urol 2020; 2020: 4347598.
11. Miller NL, Lingeman JE. Management of kidney stones. BMJ 2007; 334: 468-472.
12. Sargazi S, Saravani R, Galavi H, Mollashahee-Kohkan F. Effect of Levisticum officinale Hydroalcoholic Extract on DU-145 and PC-3 Prostate Cancer Cell Lines. Gene Cell Tissue 2017; 4(4): e66094.
13. Tasian G, Miller A, Lange D. Antibiotics and kidney stones: Perturbation of the gut-kidney axis. Am J Kidney Dis 2019; 74: 724-726.
14. Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36: 607-612.
15. Karamad D, Khosravi-Darani K, Hosseini H, Tavasoli S, Miller AW. Evaluation of Oxalobacter formigenes DSM 4420 biodegradation activity for high oxalate media content: An in vitro model. Biocatal Agric Biotechnol 2019; 22: 101378.
16. Hatch M, Freel RW. A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 2013; 41: 379-384.
17. Hoppe B, Niaudet P, Salomon R, Harambat J, Hulton S-A, Van't Hoff W, et al. A randomised Phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol 2017; 32: 781-790.
18. Milliner D, Hoppe B, Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 2018; 46: 313-323.
19. Hoppe B, Pellikka PA, Dehmel B, Banos A, Lindner E, Herberg U. Effects of Oxalobacter formigenes in subjects with primary hyperoxaluria Type 1 and end-stage renal disease: a Phase II study. Nephrol Dial Transplant 2021; 36: 1464-1473.
20. Martín R, Langella P. Emerging health concepts in the probiotics field: streamlining the definitions. Front
Microbiol 2019; 10: 1047.
21. Oriach CS, Robertson RC, Stanton C, Cryan JF, Diana TG. Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clin Nutr Exp 2016; 6: 25-38.
22. Mogna L, Pane M, Nicola S, Raiteri E. Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans? J Clin Gastroenterol 2014; 48 Suppl 1: S91-S95.
23. Cho JG, Gebhart CJ, Furrow E, Lulich JP. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics. Am J Vet Res 2015; 76: 801-806.
24. Murru N, Blaiotta G, Peruzy MF, Santonicola S, Mercogliano R, Aponte M. Screening of oxalate degrading lactic acid bacteria of food origin. Ital J Food Saf 2017; 6: 6345.
25. Miller AW, Kohl KD, Dearing MD. The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 2014; 80: 1595-1601.
26. Soliman NR, Effat BAM, Mehanna NS, Tawfik NF, Ibrahim MK. Activity of probiotics from food origin for oxalate degradation. Arch Microbiol 2021; 203: 5017-5028.
27. Mehra Y, Viswanathan P. High-quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate-degrading potential of the strain. PLoS One 2021; 16(11): e0260116.
28. Aziz K, Farooq Z, Tariq M, Zaidi AH. Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits. Folia Microbiol (Praha) 2021; 66: 411-428.
29. Mehra Y, Rajesh NG, Viswanathan P. Analysis and characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two probiotic bacteria that can degrade intestinal oxalate in hyperoxaluric rats. Probiotics Antimicrob Proteins 2022; 14: 854-872.
30. Paul E, Albert A, Ponnusamy S, Mishra SR, Vignesh AG, Sivakumar SM, et al. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats. Microbiol Res 2018; 215: 65-75.
31. Giardina S, Scilironi C, Michelotti A, Samuele A, Borella F, Daglia M, et al. In vitro anti-inflammatory activity of selected oxalate-degrading probiotic bacteria: potential applications in the prevention and treatment of hyperoxaluria. J Food Sci 2014; 79: M384-M390.
32. Wei Z, Cui Y, Tian L, Liu Y, Yu Y, Jin X, et al. Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function. FASEB J 2021; 35(11): e21937.
33. Al-Wahsh I, Wu Y, Liebman M. Acute probiotic ingestion reduces gastrointestinal oxalate absorption in healthy subjects. Urol Res 2012; 40: 191-196.
34. Siener R, Bade DJ, Hesse A, Hoppe B. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J Transl Med 2013; 11: 306.
35. Jairath A, Parekh N, Otano N, Mishra S, Ganpule A, Sabnis R, et al. Oxalobacter formigenes: Opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand J Urol 2015; 49: 334-337.
36. Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, et al. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol 2004; 70: 5066-5073.
37. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 2001; 60: 1097-1105.
38. Klimesova K, Whittamore JM, Hatch M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 2015; 43: 107-117.
39. Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS. In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Microbiol 2013; 115: 880-887.
40. Sasikumar P, Gomathi S, Anbazhagan K, Abhishek A, Paul E, Vasudevan V, et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 2014; 21: 86.
41. Paul E, Albert A, Ponnusamy S, Venkatesan S, Govindan Sadasivam S. Chromosomal integration of heterologous oxalate decarboxylase in Lactobacillus plantarum WCFS1 using mobile genetic element Ll.LtrB. Arch Microbiol 2019; 201: 467-476.
42. Zhao C, Yang H, Zhu X, Li Y, Wang N, Han S, et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria. Urology 2018; 113: 253.e1-253.e7.
43. Albert A, Tiwari V, Paul E, Ganesan D, Ayyavu M, Kujur R, et al. Expression of heterologous oxalate decarboxylase in HEK293 cells confers protection against oxalate induced oxidative stress as a therapeutic approach for calcium oxalate stone disease. J Enzyme Inhib Med Chem 2017; 32: 426-433.
44. Lee E, Jeong BC, Park YH, Kim HH. Expression of the gene encoding oxalate decarboxylase from Bacillus subtilis and characterization of the recombinant enzyme. BMC Res Notes 2014; 7: 598.
45. Allard T, Wenner T, Greten HJ, Efferth T. Mechanisms of herb-induced nephrotoxicity. Curr Med Chem 2013; 20: 2812-2819.
46. Saha S, Verma RJ. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata. Arab J Urol 2013; 11: 187-192.
47. Nishihata M, Kohjimoto Y, Hara I. Effect of Kampo extracts on urinary stone formation: an experimental investigation. Int J Urol 2013; 20: 1032-1036.
48. Xu X, Chen J, Lv H, Xi Y, Ying A, Hu X. Molecular mechanism of Pyrrosia lingua in the treatment of nephrolithiasis: Network pharmacology analysis and in vivo experimental verification. Phytomedicine 2022; 98: 153929.
49. Afkari R, Feizabadi MM, Ansari-Moghadam A, Safari T, Bokaeian M. Simultaneous use of oxalate-degrading bacteria and herbal extract to reduce the urinary oxalate in a rat model: A new strategy. Int Braz J Urol 2019; 45: 1249-1259.
50. Afkari R, Bokaeian M, Dabiri S, Ghaznavi H, Taheri M, Heidari Tajabadi F, et al. Reducing urinary oxalate by simultaneous using Sankol herbal drop with oxalate-degrading bacteria. Iran J Microbiol 2019; 11: 460-467.
51. Ghelani H, Chapala M, JadavP. Diuretic and antiurolithiatic activities of an ethanolic extract of Acorus calamus L. rhizome in experimental animal models. J Tradit Complement Med 2016; 6: 431-436.
52. Yuruk E, Tuken M, Sahin C, Kaptanagasi AO, Basak K, Aykan S, et al. The protective effects of an herbal agent tutukon on ethylene glycol and zinc disk induced urolithiasis model in a rat model. Urolithiasis 2016; 44: 501-507.
53. Lin W-C, Lai M-T, Chen H-Y, Ho C-Y, Man K-M, Shen J-L, et al. Protective effect of Flos carthami extract against ethylene glycol-induced urolithiasis in rats. Urol Res 2012; 40: 655-661.
54. Sharma I, Khan W, Parveen R, Alam MJ, Ahmad I, Ansari MH, et al. Antiurolithiasis activity of bioactivity guided fraction of Bergenia ligulata against Ethylene Glycol Induced Renal Calculi in Rat. Biomed Res Int 2017; 2017: 1969525.
55. Sahin C, Sarikaya S, Basak K, Cetinel CA, Narter F, Eryildirim B, et al. Limitation of apoptotic changes and crystal deposition by Tutukon following hyperoxaluria-induced tubular cell injury in rat model. Urolithiasis 2015; 43: 313-322.
56. Wu S-Y, Shen J-L, Man K-M, Lee Y-J, Chen H-Y, Chen Y-H, et al. An emerging translational model to screen potential medicinal plants for nephrolithiasis, an independent risk factor for chronic kidney disease. Evid Based Complement Alternat Med 2014; 2014: 972958.
57. Ellis ML, Shaw KJ, Jackson SB, Daniel SL, Knight J. Analysis of commercial kidney stone probiotic supplements. Urology 2015; 85: 517-521.
58. Rodgers AL, Webber D, Ramsout R, Gohel MD. Herbal preparations affect the kinetic factors of calcium oxalate crystallization in synthetic urine: implications for kidney stone therapy. Urolithiasis 2014; 42: 221-225.
59. Madden E, McLachlan C, Oketch-Rabah H, Calderón AI. Safety of Cranberry: evaluation of evidence of kidney stone formation and botanical drug-interactions. Planta Med 2021; 87: 803-817.
Files | ||
Issue | Vol 16 No 1 (2024) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijm.v16i1.14866 | |
Keywords | ||
Kidney stone; Probiotics; Herbal extract; Nephrolithiasis; Urolithiasis |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |