Detection of plasmid-mediated AmpC β-lactamases in Klebsiella pneumoniae clinical isolates from Bushehr province, Iran
Abstract
Background and Objectives: Plasmid-mediated AmpC producers are considered an increasing concern. The aim of this study was to investigate the prevalence of plasmid-mediated AmpC β-lactamases (pAmpCs) in Klebsiella pneumoniae isolates.
Materials and Methods: A total of 228 clinical isolates of K. pneumoniae were collected in Bushehr province, Iran, from December 2017 to February 2019. Cefoxitin disks were applied for screening AmpC-producing isolates. Furthermore, 3 phenotypic confirmatory tests including combine disk test (CDT), double disk synergy test (DDST) and modified three dimensional test (M3DT) were used. Finally, the presence of pAmpC genes was tested by multiplex PCR.
Results: We identified 18 pAmpC-KP isolates among the 228 isolates (7.9%): 12 DHA (66.6%) and 6 CMY (33.3%). In the present study only 47% of cefoxitin-resistant isolates were pAmpC producers. The sensitivity of CDT, DDST, and M3DT was 89%, 67% and 100% and the specificity was 90%, 90% and 85%, respectively. In addition, M3DT displayed a higher rate of efficiency (92%) than CDT (89%) and DDST (79%) in detecting plasmid-meditated AmpC producers.
Conclusion: DHA was the most prevalent pAmpC beta-lactamase in this study. DDST and CDT tests proved inefficient to detect two and six pAmpC producers, respectively, while M3DT represented the best overall performance.
2. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 2005; 43: 3110-3113.
3. Mohamudha Parveen R, Harish BN, Parija SC. AmpC beta lactamases among Gram negative clinical isolates from a tertiary hospital, South India. Braz J Microbiol 2010; 41: 596-602.
4. Rensing KL, Abdallah H, Koek A, Elmowalid GA, Vandenbroucke-Grauls CM, Al Naiemi N, et al. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrob Resist Infect Control 2019; 8: 45.
5. Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002; 40: 2153-2162.
6. Ku Y-H, Lee M-F, Chuang Y-C, Yu W-L. Detection of plasmid-mediated β-Lactamase genes and emergence of a novel AmpC (CMH-1) in Enterobacter cloacae at a medical Center in Southern Taiwan. J Clin Med 2019; 8: 8.
7. Nasim K, Elsayed S, Pitout JD, Conly J, Church DL, Gregson DB. New method for laboratory detection of AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 2004; 42: 4799-4802.
8. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54: 969-976.
9. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22: 161-182.
10. Iabadene H, Messai Y, Ammari H, Alouache S, Verdet C, Bakour R, et al. Prevalence of plasmid-mediated AmpC β-lactamases among Enterobacteriaceae in Algiers hospitals. Int J Antimicrob Agents 2009; 34: 340-342.
11. Lee SH, Jeong SH, Park Y-M. Characterization of blaCMY-10 a novel, plasmid-encoded AmpC-type beta-lactamase gene in a clinical isolate of Enterobacter aerogenes. J Appl Microbiol 2003; 95: 744-752.
12. Cherif T, Saidani M, Decre D, Boutiba-Ben Boubaker I, Arlet G. Cooccurrence of Multiple AmpC beta-Lactamases in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Tunisia. Antimicrob Agents Chemother 2015; 60: 44-51.
13. Nadjar D, Rouveau M, Verdet C, Donay L, Herrmann J, Lagrange PH, et al. Outbreak of Klebsiella pneumoniae producing transferable AmpC-type β-lactamase (ACC-1) originating from Hafnia alvei. FEMS Microbiol Lett 2000; 187: 35-40.
14. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005; 43: 4163-4167.
15. Bauernfeind A, Stemplinger I, Jungwirth R, Giamarellou H. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob Agents Chemother 1996; 40: 221-224.
16. Latifi B, Tajbakhsh S, Ahadi L, Yousefi F. Coexistence of aminoglycoside resistance genes in CTX-M-producing isolates of Klebsiella pneumoniae in Bushehr province, Iran. Iran J Microbiol 2021; 13: 161-170.
17. Wayne PA. Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing. 2018; M100, 28th ed.
18. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2011; 49: 2798-2803.
19. Maraskolhe DL, Deotale VS, Mendiratta DK, Narang P. Comparision of three laboratory tests for detection of AmpC β lactamases in Klebsiella Species and E. coli. J Clin Diagn Res 2014; 8: DC05-DC8.
20. Lee W, Jung B, Hong SG, Song W, Jeong SH, Lee K, et al. Comparison of 3 phenotypic-detection methods for identifying plasmid-mediated AmpC β-lactamase-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis strains. Korean J Lab Med 2009; 29: 448-454.
21. Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D, Khilnani GC, et al. Phenotypic & molecular characterization of AmpC β-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian J Med Res 2012; 135: 359-364.
22. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-951.
23. Bush K. New β-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 2001; 32: 1085-1089.
24. Moland ES, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson KS. Occurrence of newer β-lactamases in Klebsiella pneumoniae isolates from 24 US hospitals. Antimicrob Agents Chemother 2002; 46: 3837-3842.
25. Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I, Kluytmans JA, et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLoS One 2014; 9(3): e91396.
26. Tan TY, Ng LSY, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 2009; 53: 146-149.
27. Latifi B, Tajbakhsh S, Askari A, Yousefi F. Phenotypic and genotypic characterization of carbapenemase-producing Klebsiella pneumoniae clinical isolates in Bushehr province, Iran. Gene Rep 2020; 21: 100932.
28. Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. Biomed Res Int 2014; 2014: 171548.
29. Palmieri M, Schicklin S, Pelegrin AC, Chatellier S, Franceschi C, Mirande C, et al. Phenotypic and Genomic Characterization of AmpC-Producing Klebsiella pneumoniae From Korea. Ann Lab Med 2018; 38: 367-370.
30. Gupta V, Kumarasamy K, Gulati N, Garg R, Krishnan P, Chander J. AmpC β-lactamases in nosocomial isolates of Klebsiella pneumoniae from India. Indian J Med Res 2012; 136: 237-241.
31. Yilmaz N, Agus N, Bozcal E, Oner O, Uzel A. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian J Med Microbiol 2013; 31: 53-59.
32. Japoni-Nejad A, Ghaznavi-Rad E, van Belkum A. Characterization of plasmid-mediated AmpC and carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res Perspect 2014; 5: 333-338.
33. Rizi KS, Mosavat A, Youssefi M, Jamehdar SA, Ghazvini K, Safdari H, et al. High prevalence of blaCMY AmpC
beta-lactamase in ESBL co-producing Escherichia coli and Klebsiella spp. clinical isolates in the northeast of Iran. J Glob Antimicrob Resist 2020; 22: 477-482.
34. Mansouri S, Kalantar D, Asadollahi P, Taherikalani M, Emaneini M. Characterization of Klebsiella pneumoniae strains producing extended spectrum beta-lactamases and AMPC type beta-lactamases isolated from hospitalized patients in Kerman, Iran. Roum Arch Microbiol Immunol 2012; 71: 81-86.
35. Robatjazi S, Nikkhahi F, Niazadeh M, Amin Marashi SM, Peymani A, Javadi A, et al. Phenotypic identification and genotypic characterization of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Iran. Curr Microbiol 2021; 78: 2317-2323.
36. Rai S, Pant ND, Bhandari R, Giri A, Parajuli R, Aryal M, et al. AmpC and extended spectrum beta-lactamases production among urinary isolates from a tertiary care hospital in Lalitpur, Nepal. BMC Res Notes 2017; 10: 467.
37. Li Y, Li Q, Du Y, Jiang X, Tang J, Wang J, et al. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese university hospital from 2003 to 2005: first report of CMY-2-type AmpC β-lactamase resistance in China. J Clin Microbiol 2008; 46: 1317-1321.
38. Zorgani A, Daw H, Sufya N, Bashein A, Elahmer O, Chouchani C. Co-occurrence of plasmid-mediated AmpC β-lactamase activity among Klebsiella pneumoniae and Escherichia coli. Open Microbiol J 2017; 11: 195-202.
39. El-Hady SA, Adel LA. Occurrence and detection of AmpC β-lactamases among Enterobacteriaceae isolates from patients at Ain Shams University Hospital. Egypt J Med Hum Genet 2015; 16: 239-244.
40. Ghanavati R, Darban-Sarokhalil D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta Microbiol Immunol Hung 2017; 64: 455-462.
41. Pai H, Kang C-I, Byeon J-H, Lee K-D, Park WB, Kim H-B, et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 3720-3728.
Files | ||
Issue | Vol 15 No 3 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v15i3.12897 | |
Keywords | ||
AmpC; Beta-lactamase; Modified three dimensional test; Klebsiella pneumoniae |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |