Original Article

Physicochemical characterization of reusable facemasks and theoretical adhesion by a challenged bacterium

Abstract

Background and Objectives: Adhesion of microorganisms on facemask surfaces is a major problem that produces contamination of the mask wearer either by inhalation or by direct contact. Generally, physicochemical properties of the material and the microorganism are responsible for this adhesion and are also reported to influence the filtration efficiency of facemasks. However, theses surface proprieties and their effect on particles attachment on facemask materials remain poorly documented. The purpose of this study was to investigate the physicochemical properties of seven facemasks and evaluate the influence of these characteristics on the adhesion of Sataphylococcus aureus.
Materials and Methods: Physicochemical properties is done by contact angle method and scanning electron microscopy while theoretical adhesion of S. aureus is done according to XDLVO approach.
Results: The obtained results showed that all masks have a hydrophobic character. The electron donor and electron acceptor parameters change depending on each mask. Chemical analysis demonstrates the presence of two chemical elements (carbon and oxygen). Predictive adhesion demonstrate that S. aureus has an attractive behavior towards the masks used but the potential of adhesion is not the same.
Conclusion: Such information is valuable to understand attachment of biological particles and to contribute in the inhibition of this attachment.

1. WHO. Advice on the use of masks in the context of COVID-19: interim guidance, 5 June 2020. World Health Organization; 2020. Available at: https://apps.who.int/iris/handle/10665/332293
2. WHO. Considerations for implementing and adjusting public health and social measures in the context of COVID-19. 2020. Available at: https://www.who.int/publications-detail-redirect/considerations-in-adjusting-public-health-and-social-measures-in-the-context-of-covid-19-interim-guidance
3. Htwe YZN, Mamat H, Osman B, Mahmud H. Performance comparison of single and double masks: Filtration efficiencies, breathing resistance and CO2 content. Arab J Sci Eng 2022: 1-9. 10.1007/s13369-022-06801-w.
4. INRS. Appareils de protection respiratoire et bioaérosols : quelle est l’efficacité des médias filtrants ? Article de revue INRS. 2010. Available from: https://www.inrs.fr/media.html?refINRS=PR%2046
5. Soumya el A, Mohamed M, Fatimazahra B, Hassan L, Abdellah H, Fatima H, et al. Study of microbial adhesion on some wood species: Theoretical prediction. Mikrobiologiia 2011; 80: 47-52.
6. Hamadi F, Latrache H, Mabrrouki M, Elghmari A, Outzourhit A, Ellouali M, et al. Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. J Adhes Sci Technol 2005; 19: 73-85.
7. Hamadi F, Latrache H, Zahir H, Abed S El, Ellouali M, Saad IK. The relation between the surface chemical composition of Escherichia coli and their electron donor/electron acceptor (acid-base) properties. Res J Microbiol 2012; 7: 32-40.
8. Hamadi F, Latrache H, Zekraoui M, Ellouali M, Bengourram J. Effect of pH on surface energy of glass and Teflon and theoretical prediction of Staphylococcus aureus adhesion. Mater Sci Eng C 2009; 29: 1302-1305.
9. Cheng Y, Feng G, Moraru CI. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front Microbiol 2019; 10: 191.
10. ISO. ISO 22609:2004(en), Clothing for protection against infectious agents — Medical face masks — Test method for resistance against penetration by synthetic blood (fixed volume, horizontally projected). 2004. Available at: https://www.iso.org/obp/ui/fr/#iso:std:iso:22609:ed-1:v1:en
11. Gardner DJ, Oporto GS, Mills R, Samir MASA. Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 2008; 22: 545-567.
12. Kinloch AJ (2012). Adhesion and Adhesives: Sci Technol. Springer Science & Business Media.
13. Roosjen A, Busscher HJ, Norde W, van der Mei HC. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly (ethylene oxide) brush. Microbiology (Reading) 2006; 152: 2673-2682.
14. Boks NP, Norde W, van der Mei HC, Busscher HJY. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology (Reading) 2008; 154: 3122-3133.
15. Soumya E, Ibnsouda SK, Abdellah H, Hassan L. Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface. Mater Sci Eng C Mater Biol Appl 2013; 33: 1276-1281.
16. Sadiki M, Elabed S, Barkai H, Laachari F, Ibnsouda Koraichi S. The impact of Thymus vulgaris extractives on cedar wood surface energy: Theoretical and experimental of Penicillium spores adhesion. Ind Crops Prod 2015; 77: 1020-1027.
17. Hamadi F, Latrache H. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor–electron acceptor (acid–base) properties of bacterial surface. Colloids Surf B Biointerfaces 2008; 65: 134-139.
18. Hebbar RS, Isloor AM, Ismail AF. Chapter 12 - Contact Angle Measurements. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D, eds. Membrane Characterization. Elsevier; 2017: 219-255. Available at: https://www.sciencedirect.com/science/article/pii/B9780444637765000127
19. van Oss CJ. Interfacial Forces in Aqueous Media. 2nd ed. Boca Raton: CRC Press; 2006. pp. 456.
20. Amendola L, Saurini MT, Di Girolamo F, Arduini F. A rapid screening method for testing the efficiency of masks in breaking down aerosols. Microchem J 2020; 157: 104928.
21. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG. XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A Physicochem Eng Asp 2007; 296: 76-85.
22. Czaczyk K, Białas W, Myszka K. Cell Surface Hydrophobicity of Bacillus spp. as a function of nutrient Supply and Lipopeptides biosynthesis and its role in adhesion. Pol J Microbiol 2008; 57: 313-319.
23. Sanin SL, Sanin FD, Bryers JD. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem 2003; 38: 909-914.
24. Pietak A, Korte S, Tan E, Downard A, Staiger MP. Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 2007; 253: 3627-3635.
25. Gassan J, Gutowski VS, Bledzki AK. About the surface characteristics of natural fibres. Macromol Mater Eng 2000; 283: 132-139.
26. Ariawan D, Ishak ZAM, Salim MS, Taib RM, Thirmizir MZA. Wettability and interfacial characterization of alkaline treated kenaf fiber-unsaturated polyester composites fabricated by resin transfer molding. Polym Compos 2017; 38: 507-515.
27. Kan CW, Yuen CWM. Effect of atmospheric pressure plasma treatment on wettability and dryability of synthetic textile fibres. Surf Coat Technol 2013; 228: S607-S610.
28. Prorokova NP, Kumeeva TY, Vavilova SY. Improving the wettability of polyester fabric with using direct fluorination. J Fluor Chem 2019; 219: 115-122.
29. Corrente GA, Scarpelli F, Caputo P, Rossi CO, Crispini A, Chidichimo G, et al. Chemical–physical and dynamical–mechanical characterization on Spartium junceum L. cellulosic fiber treated with softener agents: a preliminary investigation. Sci Rep 2021; 11: 35.
30. Henriques M, Azeredo J, Oliveira R. Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B Biointerfaces 2004; 33: 235-241.
31. Nguyen VT, Chia TWR, Turner MS, Fegan N, Dykes GA. Quantification of acid–base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. J Microbiol Methods 2011; 86: 89-96.
32. Hong Y, Brown DG. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio. Colloids Surf B Biointerfaces 2006; 50: 112-119.
33. Asri M, Elabed A, El Ghachtouli N, Koraichi SI, Bahafid W, Elabed S. Theoretical and experimental adhesion of yeast strains with high chromium removal potential. Environ Eng Sci 2017; 34: 693-702.
34. Barberousse H, Brayner R, Do Rego AMB, Castaing J-C, Beurdeley-Saudou P, Colombet J-F. Adhesion of façade coating colonisers, as mediated by physico-chemical properties. Biofouling 2007; 23: 15-24.
35. Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J. A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Biotechnol 2002; 1: 17-38.
36. ECDC. Cloth masks and mask sterilisation as options in case of shortage of surgical masks and respirators. Eur Cent Dis Prev Control 2020. Available at: https://www.ecdc.europa.eu/en/publications-data/options-decontamination-and-reuse-respirators-covid-19-pandemic
37. MacIntyre CR, Seale H, Dung TC, Hien NT, Nga PT, Chughtai AA, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 2015; 5(4): e006577.
Files
IssueVol 15 No 2 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v15i2.12482
Keywords
COVID-19; Masks; Staphylococcus aureus; Surface properties

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Chennoufi I, Zanane C, Ameslek M, Zahir H, EL Louali M, Latrache H. Physicochemical characterization of reusable facemasks and theoretical adhesion by a challenged bacterium. Iran J Microbiol. 2023;15(2):303-310.