Identification of hub genes and molecular pathways in human T-lymphotropic virus type 1 associated diseases using protein-protein interactions networks
Abstract
Background and Objectives: Human T-lymphotropic virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The present study aims to analyze gene expression patterns in ATL and HAM/TSP.
Materials and Methods: Microarray gene expression profiling of T-lymphocytes from HTLV-1 associated disease and healthy control were obtained from Gene Expression Omnibus (GEO). Several bioinformatics tools were used to identify differentially expressed genes (DEGs). Among the generated DEGs, we constructed protein-protein interaction (PPI) between HAM/TSM and ATL in comparison to asymptomatic carriers (ACs). Subsequently, gene ontology (GO) and topological analysis were performed.
Results: We found that the majority of DEGs in ATL and HAM/TSP were importantly implicated in immune response categories. The nodes and edges number of normal-AC, AC-ATL and ATL-HAM/TSP PPIs were 168 and 145, 116 and 97, and 275 and 327, respectively. Based on the topological analyses of protein-protein interaction networks, APP (Amyloid Beta Precursor Protein) was detected as a critical player in progression of HTLV-1 disease.
Conclusion: Dysregulation of immune response associated transcripts play a critical role in HTLV-1 disease progression. Immune response associated genes may be biomarker for prognosis in cancer development and therapeutic targets.
2. Schierhout G, McGregor S, Gessain A, Einsiedel L, Martinello M, Kaldor J. Association between HTLV-1 infection and adverse health outcomes: a systematic review and meta-analysis of epidemiological studies. Lancet Infect Dis 2020;20:133-143.
3. Morales-Sanchez A, Fuentes-Panana EM. Human viruses and cancer. Viruses 2014;6:4047-4079.
4. Rosadas C, Taylor GP. Mother-to-child HTLV-1 transmission: unmet research needs. Front Microbiol 2019;10:999.
5. Poetker SK, Porto AF, Giozza SP, Muniz AL, Caskey MF, Carvalho EM, et al. Clinical manifestations in individuals with recent diagnosis of HTLV type I infection. J Clin Virol 2011;51:54-58.
6. Araujo AQC, Wedemann D. HTLV-1 associated neurological complex. What is hidden below the water? AIDS Rev 2019;21:211-217.
7. Nozuma S, Jacobson S. Neuroimmunology of human t-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol 2019;10:885.
8. Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014;123:2915-2923.
9. Yasunaga J, Matsuoka M. Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol 2011;94:435-442.
10. Naito T, Yasunaga JI, Mitobe Y, Shirai K, Sejima H, Ushirogawa H, et al. Distinct gene expression signatures induced by viral transactivators of different HTLV-1 subgroups that confer a different risk of HAM/TSP. Retrovirology 2018;15:72.
11. Cieslik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet 2018;19:93-109.
12. Mitra S, Das S, Chakrabarti J. Systems biology of cancer biomarker detection. Cancer Biomark 2013;13:201-213.
13. Yang X, Kui L, Tang M, Li D, Wei K, Chen W, et al. High-throughput transcriptome profiling in drug and biomarker discovery. Front Genet 2020;11:19.
14. Hall PA, Reis-Filho JS, Tomlinson IP, Poulsom R. An introduction to genes, genomes and disease. J Pathol 2010;220:109-113.
15. Heidecker B, Hare JM. The use of transcriptomic biomarkers for personalized medicine. Heart Fail Rev 2007;12:1-11.
16. Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol 2016;1418:93-110.
17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013;41:D991-D995.
18. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005;21:3448-3449.
19. Wang K, Lee I, Carlson G, Hood L, Galas D. Systems biology and the discovery of diagnostic biomarkers. Dis Markers 2010;28:199-207.
20. Parikh JR, Klinger B, Xia Y, Marto JA, Blüthgen N. Discovering causal signaling pathways through gene-expression patterns. Nucleic acids Res 2010;38:W109-W117.
21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
22. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R. BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics 2010;11:91.
23. Hillmer RA. Systems biology for biologists. PLoS Pathog 2015;11(5):e1004786.
24. Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, et al. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 2014;34:11159-11172.
25. Tang K, Wang C, Shen C, Sheng S, Ravid R, Jing N. Identification of a novel alternative splicing isoform of human amyloid precursor protein gene, APP639. Eur J Neurosci 2003;18:102-108.
26. Nguyen KV. β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci 2019;6:273-281.
27. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s disease (AD): from risk factors to therapeutic targeting. Cells 2020;9:383.
28. Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK. Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology 2011;76:1344-1352.
29. Sondag CM, Combs CK. Amyloid precursor protein mediates proinflammatory activation of monocytic lineage cells. J Biol Chem 2004;279:14456-14463.
30. Puig KL, Swigost AJ, Zhou X, Sens MA, Combs CK. Amyloid precursor protein expression modulates intestine immune phenotype. J Neuroimmune Pharmacol 2012;7:215-230.
31. Carrano A, Das P. Altered innate immune and glial cell responses to inflammatory stimuli in amyloid precursor protein knockout mice. PLoS One 2015;10(10):e0140210.
32. Yamano Y, Coler-Reilly A. HTLV-1 induces a Th1-like state in CD4+ CCR4+ T cells that produces an inflammatory positive feedback loop via astrocytes in HAM/TSP. J Neuroimmunol 2017;304:51-55.
33. Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. Wiley Interdiscip Rev RNA 2021;12(2):e1612.
34. Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC promotes proliferation, metastasis and predicts prognosis in prostate cancer. Cancer Manag Res 2021;13:7263-7276.
35. Zhang Q, Zhang J, Ye J, Li X, Liu H, Ma X, et al. Nuclear speckle specific hnRNP D-like prevents age-and AD-related cognitive decline by modulating RNA splicing. Mol Neurodegener 2021;16:66.
36. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 2005;24:6719-6728.
Files | ||
Issue | Vol 14 No 1 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v14i1.8814 | |
Keywords | ||
Human T-lymphotropic virus 1; Adult T-cell leukemia; Human T lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis; Gene expression; DEGs; Gene ontology |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |