Isolation and immunogenicity of extracted outer membrane vesicles from Pseudomonas aeruginosa under antibiotics treatment conditions
Abstract
Background and Objectives: Different types of antibiotics have been indicated to enhance the secretion of OMVs from Pseudomonas aeruginosa. We aimed to investigate the effect of meropenem and amikacin antibiotics on inducing the secretion of OMVs and immunologic features in P. aeruginosa.
Materials and Methods: The OMVs were prepared from P. aeruginosa under hypervesiculation condition (treatment with amikacin and meropenem), and extraction was carried out by the sequential ultracentrifugation. Physicochemical features of extracted OMVs were evaluated by electron microscopy and SDS-PAGE. To quantify antibody synthesis and function after immunization with OMV, we used ELISA, serum bactericidal activity, and opsonophagocytosis. Production of cytokines from splenocytes of immunized mice was measured with ELISA.
Results: Specific-antibody IgG production, particularly IgG1 subclass, increased in mice primed with hypervesiculation-derived OMVs compared to normal condition-derived OMVs. Serum bactericidal activity and opsonophagocytosis of secreted antibody was enhanced in mice primed with hypervesiculation-derived OMVs. Investigation of cytokine production showed the upregulation of IL-8, IL-12, IL-17, and TNF-α and downregulation of IL-10.
Conclusion: Based on our findings, OMVs production can be increased by treating P. aeruginosa with amikacin and meropenem antibiotics. Moreover, hypervesiculation-derived OMV scan possibly activate the humoral and cellular immune response more than normal OMVs.
2. Döring G, Pier GB. Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008;26:1011-1024.
3. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010;64:163-184.
4. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 2005;437:422-425.
5. Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 2006;8:2400-2408.
6. Bauman SJ, Kuehn MJ. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 2009;9:26.
7. Bomberger JM, MacEachran DP, Coutermarsh BA,Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009;5(4):e1000382.
8. Sinha AK, Possoz C, Leach DRF. The roles of bacterial DNA double-strand break repair proteins in chromosomal DNA replication. FEMS Microbiol Rev 2020;44:351-368.
9. Heidarzadeh S, Enayati Kaliji Y, Pourpaknia R, Mohammadzadeh A, Ghazali-Bina M, Saburi E, et al. A meta-analysis of the prevalence of class 1 integron and correlation with antibiotic resistance in Pseudomonas aeruginosa recovered from Iranian burn patients. J Burn Care Res 2019;40:972-978.
10. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001;48 Suppl 1:5-16.
11. Delbaz SA, Siadat SD, Aghasadeghi MR, Piryaie M, Najar Peerayeh SH, Mousavi SF,et al. Biological and immunological evaluation of Neisseria meningitidis serogroup A outer membrane vesicle as vaccine candidates. Jundishapur J Microbiol 2013;6(4):e5007.
12. Malekan M, Siadat SD, Aghasadeghi M, Shahrokhi N, Afrough P, Behrouzi Ava, et al. Evaluation of protective immunity responses against pneumococcal PhtD and its C-terminal in combination with outer-membrane vesicles as adjuvants. J Med Microbiol 2020;69:465-477.
13. Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018;14(3):e1006945.
14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
15. Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 2001;69:1895-1901.
16. Theilacker C, Coleman FT, Mueschenborn S, Llosa N, Grout M, Pier GB. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect Immun 2003;71:3875-3884.
17. El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2009;64:229-238.
18. Siqueira VL, Cardoso RF, Caleffi-Ferracioli KR, Scodro RB, Fernandez MA, Fiorini A, et al. Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents chemother 2014;58:3957-3967.
19. Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R, Van Driessche G, et al. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015;6:298.
20. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011;11:258.
21. MacDonald IA, Kuehn MJ. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 2013;195:2971-2981.
22. Bauwens A, Kunsmann L, Karch H, Mellmann A, Bielaszewska M. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104: H4 and O157: H7. Antimicrob Agents Chemother 2017;61(9):e00937-17.
23. Yun SH, Park EC, Lee SY, Lee H, Choi CW, Yi YS, et al. Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clin Proteomics 2018;15:28.
24. Metruccio MM, Evans DJ, Gabriel MM, Kadurugamuwa JL, Fleiszig SM. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion. Front Microbiol 2016;7:871.
25. Zhang X, Yang F, Zou J, Wu W, Jing H, Gou Q, et al. Immunization with Pseudomonas aeruginosa outer membrane vesicles stimulates protective immunity in mice. Vaccine 2018;36:1047-1054.
26. Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 2010;78:3822-3831.
27. Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol 2019;20:33.
28. Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 2011;183:1674-1679.
29. Chung KF. Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets 2006;7:675-681.
30. Abadi AH, Mahdavi M, Khaledi A, Esmaeili SA, Esmaeili D, Sahebkar AH. Study of serum bactericidal and splenic activity of Total-OMP-CagA combination from Brucella abortus and Helicobacter pylori in BALB/c mouse model. Microb Pathog 2018;121:100-105.
31. Khaledi A, Khademi F, Esmaeili D, Esmaeili SA, Rostami H. The role of HPaA protein as candidate vaccine against Helicobacter pylori. Der Pharma Chemica 2016;8:235-237.
32. Murphy TF, Brauer AL, Eschberger K, Lobbins P, Grove L, Cai X, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:853-860.
33. Park KS, Lee J, Jang SC, Kim SR, Jong MH, Lötvall J, et al. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2013;49:637-645.
Files | ||
Issue | Vol 13 No 6 (2021) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v13i6.8087 | |
Keywords | ||
Outer membrane vesicle; Pseudomonas aeruginosa; Hypervesiculation; Immunization |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |