Original Article

High frequency of SCCmec type IV and multidrug-resistant SCCmec type I among hospital acquired methicillin-resistant Staphylococcus aureus isolates in Birjand Imam Reza Hospital, Iran

Abstract

Background and Objectives: The ever-increasing of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) has become a major threat to public health worldwide. Molecular typing is used to determine the source of MRSA infections as well as to control and prevent the spread of these pathogens. The present study aimed to investigate the characteristics of staphylococcal cassette chromosome mec (SCCmec) types and antibiotic resistance of community- acquired (CA-) and hospital acquired (HA-) MRSA isolates.
Materials and Methods: In this cross-sectional study, the antibiotic susceptibility patterns of 109 clinical S. aureus isolates were determined by the Kirby-Bauer disk-diffusion and microdilution broth methods. MRSA isolates were confirmed using the polymerase chain reaction (PCR) method for the detection of the mecA gene. SCCmec typing was performed by a multiplex PCR assay among MRSA isolates.
Results: The prevalence of MRSA isolates was 39.4%. Linezolid, vancomycin, and ceftaroline were the most effective agents against MRSA isolates. The incidence of multidrug-resistant (MDR) and resistance to most antibiotics were significantly higher in MRSA than methicillin-susceptible S. aureus (MSSA) isolates (P<0.05). SCCmec types I, III, and IV were identified in 27.9%, 23.3%, and 37.2% of MRSA isolates, respectively. SCCmec type I and IV were the most prevalent SCCmec types in HA-MRSA isolates (each was 32.4%). While SCCmec type IV (66.7%) was the most frequently SCCmec type associated with CA-MRSA isolates.
Conclusion: Our findings demonstrated a high rate of MDR among MRSA isolates. The high existence of SCCmec type IV was reported among the HA-MRSA isolates, which can indicate the spread of MRSA community isolates to hospital settings. Therefore, appropriate antibiotic stewardship plans and microbiological surveillance initiatives must be implemented in healthcare facilities to monitor and limit the spread of these resistant bugs.

1. Neupane K, Rayamajhee B, Acharya J, Rijal N, Shrestha D, GC B, et al. Comparison of nasal colonization of methicillin-resistant Staphylococcus aureus in HIV-infected and non-HIV patients attending the national public health laboratory of Central Nepal. Can J Infect Dis Med Microbiol 2018; 2018: 4508757.
2. Preeja PP, Kumar SH, Shetty V. Prevalence and Characterization of methicillin-resistant Staphylococcus aureus from community-and hospital-associated infections: a tertiary care center study. Antibiotics (Basel) 2021; 10: 197.
3. Moshtagheian S, Halaji M, Sedaghat H, Shahin M, Esfahani BN, Havaei SR, et al. Molecular characteristics of methicillin-resistant Staphylococcus aureus nasal carriage from hospitalized patients and medical staff in Isfahan, Iran. Ann Ig 2018; 30: 237-244.
4. Rossato AM, Primon-Barros M, Rocha LDL, Reiter KC, Dias CAG, d’Azevedo PA. Resistance profile to antimicrobials agents in methicillin-resistant Staphylococcus aureus isolated from hospitals in South Brazil between 2014-2019. Rev Soc Bras Med Trop 2020; 53:e20200431.
5. Rahimi F, Katouli M, Karimi S. Biofilm production among methicillin resistant Staphylococcus aureus strains isolated from catheterized patients with urinary tract infection. Microb Pathog 2016; 98: 69-76.
6. Barnes BE, Sampson DA. A literature review on community‐acquired methicillin‐resistant Staphylococcus aureus in the United States: clinical information for primary care nurse practitioners. J Am Acad Nurse Pract 2011; 23: 23-32.
7. Valle DL Jr, Paclibare PA, Cabrera EC, Rivera WL. Molecular and phenotypic characterization of methicillin-resistant Staphylococcus aureus isolates from a tertiary hospital in the Philippines. Trop Med Health 2016; 44: 3.
8. Tajik S, Najar-Peerayeh S, Bakhshi B, Golmohammadi R. Molecular characterization of community-associated methicillin-resistant Staphylococcus aureus in Iranian burn patients. Iran J Pathol 2019; 14: 284-289.
9. Kot B, Wierzchowska K, Piechota M, Grużewska A. Antimicrobial resistance patterns in methicillin-resistant Staphylococcus aureus from patients hospitalized during 2015–2017 in hospitals in Poland. Med Princ Pract 2020; 29: 61-68.
10. Hashemizadeh Z, Hadi N, Mohebi S, Kalantar-Neyestanaki D, Bazargani A. Characterization of SCCmec, spa types and multi drug resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in Shiraz, Iran. BMC Res Notes 2019; 12: 614.
11. Ahmadishoar S, Pour NK, Sadeghi J, Nahaei MR, Kheirkhah B. Genotypic and phenotypic characterisation of clinical isolates of methicillin-resistant Staphylococcus aureus in two different geographical locations of Iran. Indian J Med Microbiol 2020; 38: 162-168.
12. Momtaz H, Hafezi L. Meticillin-resistant Staphylococcus aureus isolated from Iranian hospitals: virulence factors and antibiotic resistance properties. Bosn J Basic Med Sci 2014; 14: 219-226.
13. Wayne P .(2019) Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100S.
14. Alipour F, Ahmadi M, Javadi S. Evaluation of different methods to detect methicillin resistance in Staphylococcus aureus (MRSA). J Infect Public Health 2014; 7: 186-191.
15. Boye K, Bartels MD, Andersen IS, Møller JA, Westh H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin Microbiol Infect 2007; 13: 725-727.
16. Fatholahzadeh B, Emaneini M, Gilbert G, Udo E, Aligholi M, Modarressi MH, et al. Staphylococcal cassette chromosome mec (SCC mec) analysis and antimicrobial susceptibility patterns of methicillin-resistant Staphylococcus aureus (MRSA) isolates in Tehran, Iran. Microb Drug Resist 2008; 14: 217-220.
17. Moosavian M, Shahin M, Navidifar T, Torabipour M. Typing of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates in Ahvaz, Iran. New Microbes New Infect 2018; 21: 90-94.
18. Bhutia KO, Singh T, Adhikari L, Biswas S. Molecular characterization of community-& hospital-acquired methicillin-resistant & methicillin-sensitive Staphylococcus aureus isolates in Sikkim. Indian J Med Res 2015; 142: 330-335.
19. Hussain S, Shams R, Ahmad K, Perveen R, Riaz B. Prevalence of methicillin resistant Staphylococcus aureus (MRSA) in surgical site infections in a tertiary care hospital. Int J Pathol 2005; 3: 81-85.
20. Wangai FK, Masika MM, Maritim MC, Seaton RA. Methicillin-resistant Staphylococcus aureus (MRSA) in East Africa: red alert or red herring?. BMC Infect Dis 2019; 19: 596.
21. Terry Alli OA, Ogbolu DO, Mustapha JO, Akinbami R, Ajayi AO. The non-association of Panton-Valentine leukocidin and mecA genes in the genome of Staphylococcus aureus from hospitals in South Western Nigeria. Indian J Med Microbiol 2012; 30: 159-164.
22. Rodrigues MdA, Gindri L, Silva ADd, Guex CG, Santos SOd, Hörner R. Prevalence of methicillin-resistant Staphylococcus aureus in a university hospital in the south of Brazil. Braz J Pharm Sci 2015; 51: 35-41.
23. Fasihi Y, Kiaei S, Kalantar-Neyestanaki D. Characterization of SCCmec and spa types of methicillin-resistant Staphylococcus aureus isolates from health-care and community-acquired infections in Kerman, Iran. J Epidemiol Glob Health 2017; 7: 263-267.
24. Afsharian M, Hemmati M, Mansouri F, Azizi M, Zamanian MH, Mohseni Afshar Z, et al. Frequency of class I and II integrons in methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates in the City of Kermanshah. Arch Clin Infect Dis 2019; 14(4); e86688.
25. Motallebi M, Jabalameli F, Beigverdi R, Emaneini M. High prevalence of direct repeat unit types of 10di, 8 h and 8i among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated in Tehran, Iran. Antimicrob Resist Infect Control 2019; 8: 50.
26. Moglad EH. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in clinical specimens and among hospital staff nasal carriers in khartoum state. Int J Pharm Sci Res 2021; 12; 673-677.
27. Gurung RR, Maharjan P, Chhetri GG. Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Sci OA 2020; 6: FSO464.
28. Mitra S, Chayani N, Mohapatra D, Barik MR, Sharma S, Basu S. High prevalence of biofilm-forming MRSA in the conjunctival flora in chronic dacryocystitis. Semin Ophthalmol 2019; 34; 74-79.
29. Frazee BW, Lynn J, Charlebois ED, Lambert L, Lowery D, Perdreau-Remington F. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann Emerg Med 2005; 45: 311-320.
30. Johansson PJ, Gustafsson EB, Ringberg H. High prevalence of MRSA in household contacts. Scand J Infect Dis 2007; 39: 764-768.
31. Japoni A, Jamalidoust M, Farshad S, Ziyaeyan M, Alborzi A, Japoni S, et al. Characterization of SCCmec types and antibacterial susceptibility patterns of methicillin-resistant Staphylococcus aureus in southern Iran. Jpn J Infect Dis 2011; 64: 28-33.
32. Khoshbayan A, Shariati A, Ghaznavi-Rad E, van Belkum A, Darban-Sarokhalil D. Prevalence and molecular epidemiology of ceftaroline non-susceptible methicillin-resistant Staphylococcus aureus isolates, first clinical report from Iran. Acta Microbiol Immunol Hung 2020; 67: 228-233.
33. Suwantarat N, Rubin M, Bryan L, Tekle T, Boyle MP, Carroll KC, et al. Frequency of small-colony variants and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus in cystic fibrosis patients. Diagn Microbiol Infect Dis 2018; 90: 296-299.
34. Dibah S, Arzanlou M, Jannati E, Shapouri R. Prevalence and antimicrobial resistance pattern of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in Ardabil, Iran. Iran J Microbiol 2014; 6: 163-168.
35. Brown PD, Ngeno C. Antimicrobial resistance in clinical isolates of Staphylococcus aureus from hospital and community sources in southern Jamaica. Int J Infect Dis 2007; 11: 220-225.
36. Tsige Y, Tadesse S, G/Eyesus T, Tefera MM, Amsalu A, Menberu MA, Gelaw B. Prevalence of methicillin-resistant Staphylococcus aureus and associated risk factors among patients with wound infection at referral hospital, northeast Ethiopia. J Pathog 2020; 2020: 3168325.
37. Berglund C, Mölling P, Sjöberg L, Söderquist B. Predominance of staphylococcal cassette chromosome mec (SCCmec) type IV among methicillin-resistant Staphylococcus aureus (MRSA) in a Swedish county and presence of unknown SCCmec types with Panton-Valentine leukocidin genes. Clin Microbiol Infect 2005; 11: 447-456.
38. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol 2008; 8: 747-763.
39. Dhawan B, Rao C, Udo EE, Gadepalli R, Vishnubhatla S, Kapil A. Dissemination of methicillin-resistant Staphylococcus aureus SCCmec type IV and SCCmec type V epidemic clones in a tertiary hospital: challenge to infection control. Epidemiol Infect 2015; 143: 343-353.
Files
IssueVol 14 No 1 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v14i1.8803
Keywords
Methicillin-resistant Staphylococcus aureus; Drug resistance; Multidrug-resistant; mecA gene; Molecular typing; Polymerase chain reaction

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sadeghi Moghaddam T, Namaei MH, Afshar D, Yousefi M. High frequency of SCCmec type IV and multidrug-resistant SCCmec type I among hospital acquired methicillin-resistant Staphylococcus aureus isolates in Birjand Imam Reza Hospital, Iran. Iran J Microbiol. 2022;14(1):67-75.