Original Article

Prevalence of multidrug-resistance and blaVIM and blaIMP genes among gram-negative clinical isolates in tertiary care hospital, Kathmandu, Nepal

Abstract

Background and Objectives: Carbapenems have been the choice of antibiotics for the treatment of infections caused by multidrug-resistant bacteria. The main objective of this study was to determine the prevalence of carbapenemase (blaVIM and blaIMP) producing isolates among Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii.
Materials and Methods: A total of 1,151 clinical samples were collected from the patients visiting Annapurna Neurological Institute and Allied Science and Annapurna Research Centre, Kathmandu, between June 2017 and January 2018. Antibiotic susceptibility testing (AST) was performed on the Enterobacteriaceae, P. aeruginosa and A. baumannii isolates using the Kirby-Bauer disk diffusion method. The modified Hodge test (MHT) was performed on the carbapenem-resistant isolates to confirm carbapenemase production. DNA was extracted and then screened for blaVIM and blaIMP genes by multiplex PCR.
Results: Of the total 1,151 clinical samples, 253 (22.0%) showed positive growth. Of them, 226 (89.3%) were identified as Enterobacteriaceae, P. aeruginosa, and A. baumannii. Among the 226 isolates, 106 (46.9%) were multidrug-resistant. Out of the 106, 97 (91.5%) isolates showed resistance to at least one of the carbapenem used. Among the 97 carbapenem-resistant isolates, 67 (69.1%) showed the modified Hodge test (MHT) positive results. blaVIM and blaIMP were detected in 40 and 38 isolates respectively using multiplex PCR assay.
Conclusion: This study determined a high prevalence of MDR and carbapenem resistance among Enterobacteriaceae, P. aeruginosa, and A. baumannii as detected by the presence of blaVIM and blaIMP genes. This study recommends the use of rapid and advanced diagnostic tools along with conventional phenotypic detection methods in the clinical settings for early detection and management of drug-resistant pathogens to improve treatment strategies.

1. Meletis G. Carbapenem resistance: an overview of the problem and future perspectives. Ther Adv Infect Dis 2016;3:15-21.
2. World Health Organization. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in health care facilities. World Health Organization. 2017. https://apps.who.int/iris/handle/10665/259462. Accessed 19 Aug 2019.
3. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791-1798.
4. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-458.
5. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for beta-lactams? Lancet Infect Dis 2011;11:381-393.
6. Meletis G, Chatzidimitriou D, Malisiovas N. Double- and multi-carbapenemase-producers: the excessively armored bacilli of the current decade. Eur J Clin Microbiol Infect Dis 2015;34:1487-1493.
7. Birgy A, Bidet P, Genel N, Doit C, Decre D, Arlet G, et al. Phenotypic screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2012;50:1295-1302.
8. Nordmann P, Gniadkowski M, Gisk CG, Poirel L, Woodford N, Miriagou V, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2012;18:432-438.
9. Amjad A, Mirza IA, Abbasi SA, Farwa U, Malik N, Zia F. Modified Hodge test: a simple and effective test for detection of carbapenemase production. Iran J Microbiol 2011;3:189-193.
10. Wayne PA (2010). Clinical and Laboratory Standards Institute (CLSI). performance standards for antimicrobial susceptibility testing: 19th informational supplement. M100-S29.
11. Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol 2018;56(11):e01140-18.
12. Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection. J Clin Microbiol 2016;54:529-534.
13. European Centre for Disease Prevention and Control. Carbapenemase-producing bacteria in Europe: interim results from the European survey on carbapenemase-producing Enterobacteriaceae (EuSCAPE) project. Stockholm: ECDC; 2013.
14. Bahmani N. Detection of VIM-1, VIM-2 and IMP-1 metallo- β-lactamase genes in Klebsiella pneumoniae isolated from clinical samples in Sanandaj, Kurdistan, west of Iran. Iran J Microbiol 2019;11:225-231.
15. Ismail SJ, Mahmoud SS. First detection of New Delhi metallo-β-lactamases variants (NDM-1, NDM-2) among Pseudomonas aeruginosa isolated from Iraqi hospitals. Iran J Microbiol 2018;10:98-103.
16. Li Y, Sun QL, ShenY, Zhang Y, Yang JW, Shu LB, et al. Rapid increase in prevalence of carbapenem-resistant Enterobacteriaceae (CRE) and emergence of colistin resistance gene mcr-1 in CRE in a hospital in Henan, China. J Clin Microbiol 2018;56(4):e01932-17.
17. Savard P, Perl TM. A call for action: managing the emergence of multidrug-resistant Enterobacteriaceae in the acute care settings. Curr Opin Infect Dis 2012;25:371-377.
18. Mirbagheri SZ, Meshkat Z, Naderinasab M, Rostami S, Nabavinia MS, Rahmati M. Study on imipenem resistance and prevalence of blaVIM1 and blaVIM2 metallo-beta lactamases among clinical isolates of Pseudomonas aeruginosa from Mashhad, northeast of Iran. Iran J Microbiol 2015;7:72-78.
19. Adam MA, Elhag WI. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect Dis 2018;18:668.
20. Kazeminezhad B, Rad AB, Gharib A, Zahedifard S. BlaVIM and blaIMP genes detection in isolates of carbapenem-resistant P. aeruginosa of hospitalized patients in two hospitals in Iran. Iran J Pathol 2017;12:392-396.
21. Pokharel K, Dawadi BR, Bhatt CP, Gupte S, Jha B. Resistance pattern of carbapenem on Enterobacteriaceae. JNMA J Nepal Med Assoc 2018;56:931-935.
22. Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes 2014;7:557.
23. Gupta E, Mohanty S, Sood S, Dhawan B, Das BK, Kapil A. Emerging resistance to carbapenems in a tertiary care hospital in north India. Indian J Med Res 2006;124:95-98.
24. Devkota SP, Paudel A, Bhatta DR, Gurung K. Carbapenemase among clinical bacterial isolates in Nepal. J Nepal Health Res Counc 2020;18:159-165.
25. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect Drug Resist 2020;13:4249-4261.
26. Cheesbrough M (2006). District laboratory practice in tropical countries, part II. 2nd ed. Cambridge University Press. Cambridge. pp. 35-60.
27. Cheesbrough M (2006). District laboratory practice in tropical countries, part II. 2nd ed. Cambridge University Press. Cambridge. pp. 62-70.
28. Wayne PA (2013). Clinical and Laboratory Standards Institute (CLSI). performance standards for antimicrobial susceptibility testing: 23rd informational supplement. M100-S23.
29. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41:4623-4629.
30. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for the detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70:119-123.
31. Thapa P, Bhandari D, Shrestha D, Parajuili H, Chaudhary P, Amatya J, et al. A hospital based surveillance of metallo-beta-lactamase producing gram negative bacteria in Nepal by imipenem-EDTA disk method. BMC Res Notes 2017;10:322.
32. Price LB, Hungate BA, Koch BJ, Davis GS, Liu CM. Colonizing opportunistic pathogens (COPs): the beasts in all of us. PLoS Pathog 2017;13(8):e1006369.
33. Cai B, Echols R, Magee G, Ferreira JCA, Morgan G, Ariyasu M, et al. Prevalence of carbapenem-resistant gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis 2017;4:ofx176.
34. Mendes RE, Mendoza M, Banga Singh KK, Castanheira M, Bell JM, Turnidge JD, et al. Regional resistance surveillance program results for 12 Asia-Pacific nations (2011). Antimicrob Agents Chemother 2013;57:5721-5726.
35. Kostyanev T, Vilken T, Lammens C, Timbermont L, Van't Veen A, Goossens H. Detection and prevalence of carbapenem-resistant gram-negative bacteria among European laboratories in the COMBACTE network: a COMBACTE lab-net survey. Int J Antimicrob Agents 2019;53:268-274.
36. Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial susceptibility of Acinetobacter calcoaceticus–Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY antimicrobial surveillance program (1997–2016). Open Forum Infect Dis 2019;6(Suppl 1):S34-S46.
37. Shilpakar A, Ansari M, Rai KR, Rai G, Rai SK. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase producing gram-negative isolates from clinical samples in a tertiary care hospital of Nepal. Trop Med Health 2021;49:23.
38. Manandhar S, Zellweger RM, Maharjan N, Dangol S, Prajapati KG, Thwaites G, et al. A high prevalence of multi-drug resistant ram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of extended-spectrum beta-lactamase (ESBL) and carbapenemase-encoding genes. Ann Clin Microbiol Antimicrob 2020;19:48.
39. Mishra SK, Acharya J, Kattel HP, Koirala J, Rijal BP, Pokhrel BM. Metallo-beta-lactamase producing gram-negative bacterial isolates. J Nepal Health Res Counc 2012;10:208-213.
40. Gurung S, Kafle S, Dhungel B, Adhikari N, Thapa Shrestha U, Adhikari B, et al. Detection of OXA-48 gene in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from urine samples. Infect Drug Resist 2020;13:2311-2321.
41. Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of Enterobacteriaceae by incorporating boronic acid. J Clin Microbiol 2010;48:1323-1332.
42. Gilrich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol 2012;50:477-479.
43. Carvalhaes CG, Picao RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother 2010;65:249-251.
44. Stuart JC, Voets G, Scharringa J, Fluit AC, Leverstein-Van Hall MA. Detection of carbapenemase-producing Enterobacteriaceae with a commercial DNA microarray. J Med Microbiol 2012;61:809-812.
Files
IssueVol 13 No 3 (2021) QRcode
SectionOriginal Article(s)
Published2021-06-05
DOI https://doi.org/10.18502/ijm.v13i3.6392
Keywords
Carbapenems; Carbapenemase; Multidrug resistance; blaVIM; blaIMP

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ansari M, Aryal SC, Rai G, Rai KR, Pyakurel S, Bhandari B, Sah AK, Rai SK. Prevalence of multidrug-resistance and blaVIM and blaIMP genes among gram-negative clinical isolates in tertiary care hospital, Kathmandu, Nepal. Iran J Microbiol. 2021;13(3):303-311.