Review Article

Potential role of gut microbiota in patients with COVID-19, its relationship with lung axis, central nervous system (CNS) axis, and improvement with probiotic therapy


Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a new corona virus. COVID-19 affects different people in different ways. COVID-19 could affect the gastrointestinal system via gut microbiota impairment. Gut microbiota could affect lung health through a relationship between gut and lung microbiota, which is named gut-lung axis. Gut microbiota impairment plays a role in pathogenesis of various pulmonary disease states, so GI diseases were found to be associated with respiratory diseases. Moreover, most infected people will develop mild to moderate gastrointestinal (GI) symptoms such as diarrhea, vomiting, and stomachache, which is caused by impairment in gut microbiota. Therefore, the current study aimed to review potential role of gut microbiota in patients with COVID-19, its relation with lung axis, Central Nervous System (CNS) axis and improvement with probiotic therapy. Also, this review can be a guide for potential role of gut microbiota in patients with COVID-19.

1. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)-United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep 2020;69:343-346.
2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395: 1033-1034.
3. Jalili M, Payandemehr P, Saghaei A, Sari HN, Safikhani H, Kolivand P. Characteristics and mortality of hospitalized patients with COVID-19 in Iran: a national retrospective cohort study. Ann Intern Med 2021; 174 :125-127.
4. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 2020; 296(2): E15-E25.
5. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020; 18: 216.
6. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY) 2020; 12: 10087-10098.
7. Seow JJW, Pai R, Mishra A, Shepherdson E, Lim TKH, Goh BK, et al. scRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ liver progenitor cells: implications in COVID-19 associated liver dysfunction. bioRxiv 2020; 3: 002832.
8. Sinha P, Matthay MA, Calfee CS. Is a “cytokine storm” relevant to COVID-19? JAMA Intern Med 2020; 180: 1152-1154.
9. Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity 2020; 53: 19-25.
10. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J Med Virol 2020; 92: 552-555.
11. Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, et al. Detectable SARS‐CoV‐2 viral RNA in feces of three children during recovery period of COVID‐19 pneumonia. J Med Virol 2020; 92: 909-914.
12. Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69: 1002-1009.
13. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms in patients with COVID-19. Gastroenterology 2020; 158: 2294-2297.
14. Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA 2020; 323 :1915-1923.
15. Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115: 766-773.
16. Dhar D, Mohanty A. Gut microbiota and Covid-19-possible link and implications. Virus Res 2020; 285: 198018.
17. Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities–role of gut microbiota dysbiosis. Ageing Res Rev 2020; 62: 101123.
18. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020; 159: 944-955.e8.
19. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis 2020; 71: 2669-2678.
20. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 2020; 226: 57-69.
21. He Y, Wang J, Li F, Shi Y. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 Infections. Front Microbiol 2020; 11: 1302.
22. AKTAŞ B, Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol 2020; 44: 265-272.
23. Andrade MC, de Faria RS, Avelino Mota Nobre S. COVID-19: Can the symptomatic SARS-CoV-2 infection affect the homeostasis of the gut-brain-microbiota axis? Med Hypotheses 2020; 144: 110206.
24. Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur IP, et al. Diet, gut microbiota and COVID-19. Indian J Microbiol 2020; 60: 1-10.
25. Zuo T, Liu Q, Zhang F, Lui GC, Tso EYK, Yeoh YK, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70: 276-284.
26. Scalise M, Indiveri C. Repurposing nimesulide, a potent inhibitor of the B0AT1 subunit of the SARS-CoV-2 receptor, as a therapeutic adjuvant of COVID-19. SLAS Discov 2020; 25: 1171-1173.
27. Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig 2020; 112: 383-388.
28. Ahlawat S, Asha, Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res 2020; 286: 198103.
29. Mak JWY, Chan FKL, Ng SC. Probiotics and COVID-19: one size does not fit all. Lancet
Gastroenterol Hepatol 2020; 5: 644-645.
30. Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. Dose–response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am J Gastroenterol 2010; 105: 1636-1641.
31. Miri SM, Roozbeh F, Omranirad A, Alavian SM. Panic of buying toilet papers: a historical memory or a horrible truth? systematic review of gastrointestinal manifestations of COVID-19. Hepat Mon 2020(3); e102729.
32. Pence BD. Severe COVID-19 and aging: are monocytes the key? Geroscience 2020; 42: 1051-1061.
33. Conte L, Toraldo DM. Targeting the gut–lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis 2020; 14: 1753466620937170.
34. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol 2017; 15: 55-63.
35. Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 2019; 12: 843-850.
36. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut–lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43: 81-95.
37. Dumas A, Bernard L, Poquet Y, Lugo‐Villarino G, Neyrolles O. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell Microbiol 2018; 20(12): e12966.
38. Marsland BJ, Trompette A, Gollwitzer ES. The gut–lung axis in respiratory disease. Ann Am Thorac Soc 2015; 12 Suppl 2: S150-6.
39. Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The gut microbiota and respiratory diseases: new evidence. J Immunol Res 2020; 2020: 2340670.
40. Sencio V, Machado MG, Trottein F. The lung–gut axis during viral respiratory infections: The impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021; 14: 296-304.
41. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017; 279: 70-89.
42. He LH, Ren LF, Li JF, Wu YN, Li X, Zhang L. Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front Microbiol 2020; 11: 1388.
43. Cadegiani FA, Wambier CG, Goren A. Spironolactone: an anti-androgenic and anti-hypertensive drug that may provide protection against the novel coronavirus (SARS-CoV-2) induced acute respiratory distress syndrome (ARDS) in COVID-19. Front Med (Lausanne) 2020; 7: 453.
44. Anderson G, Reiter RJ. COVID-19 pathophysiology: interactions of gut microbiome, melatonin, vitamin D, stress, kynurenine and the alpha 7 nicotinic receptor: treatment implications. Melatonin Res 2020; 3: 322-345.
45. Fromentin M, Ricard J-D, Roux D. Respiratory microbiome in mechanically ventilated patients: a narrative review. Intensive Care Med 2021; 47: 292-306.
46. Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med 2018; 91: 143-149.
47. Dickson RP. The lung microbiome and ARDS. It is time to broaden the model. Am J Respir Crit Care Med 2018; 197: 549-551.
48. Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit Care 2020; 24: 278.
49. Zhuang H, Cheng L, Wang Y, Zhang YK, Zhao MF, Liang GD, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol 2019; 9: 112.
50. Middleton EA, Zimmerman GA. Early returns in vascular inflammation in ARDS. Am J Respir Crit Care Med 2018; 197: 1514-1516.
51. Al-Kuraishy HM, Al-Niemi MS, Hussain NR, Al-Gareeb AI, Al-Harchan NA, Al-Kurashi AH (2020). The potential role of Renin Angiotensin System (RAS) and Dipeptidyl Peptidase-4 (DPP-4) in COVID-19: navigating the uncharted. In: Renin-Angiotensin System. Ed, K Aleksandar. IntechOpen, London, UK, pp. 232-241.
52. Li H, Liu X, Chen F, Zuo K, Wu C, Yan Y, et al. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken ileum. Viruses 2018; 10: 270.
53. Rahimian N, Alibeik N, Pishgar E, Dini P,, Abolmaali M, Mirzaasgari Z . Manifestation of ocular myasthenia gravis as an initial symptom of coronavirus disease 2019: a case report. Iran J Med Sci 2021; 47: 2-5.
54. Mawhinney JA, Wilcock C, Haboubi H, Roshanzamir S. Neurotropism of SARS-CoV-2: COVID-19 presenting with an acute manic episode. BMJ Case Rep 2020; 13(6): e236123.
55. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99: 1877-2013.
56. Foster JA, McVey Neufeld KA. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36: 305-312.
57. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125: 926-938.
58. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28: 203-209.
59. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, et al. Neurotransmitters: The critical modulators regulating gut–brain axis. J Cell Physiol 2017; 232: 2359-2372.
60. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018; 1693(Pt B): 128-133.
61. Jameson KG, Hsiao EY. Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci 2018; 41: 413-414.
62. Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci 2018; 12: 155.
63. Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111: 14-33.
64. Kow CS, Hasan SS. The use of antimotility drugs in COVID-19 associated diarrhea. J Infect 2021; 82: e19.
65. Kumar A, Pareek V, Prasoon P, Faiq MA, Kumar P, Kumari C, et al. Possible routes of SARS‐CoV‐2 invasion in brain: In context of neurological symptoms in COVID‐19 patients. J Neurosci Res 2020; 98: 2376-2383.
66. Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, Gouilh MA, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 2020; 89: 579-586.
67. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127: 104362.
68. Follmer C. Gut microbiome imbalance and neuroinflammation: impact of COVID‐19 on Parkinson's disease. Mov Disord 2020; 35: 1495-1496.
69. Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Cho Y, Ambade A, et al. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 2018; 15: 298.
70. Cryan JF, O’mahony SM, The microbiome‐gut‐brain axis: from bowel to behavior. Neurogastroenterol Motil 2011; 23: 187-192.
71. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 2020; 11: 1200-1203.
72. Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R, Bella R. SARS-CoV-2 and the nervous system: from clinical features to molecular mechanisms. Int J Mol Sci 2020; 21: 5475.
73. Wu Y , Xu X , Chen Z, Duan J , Hashimoto K , Yang L , et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
74. Azad MAK, , Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018; 2018: 9478630.
75. Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr 2020; 60: 1769-1782.
76. Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci and Technol 2020; 99: 295-310.
77. Han Y, Xiao H. Whole food–based approaches to modulating gut microbiota and associated diseases. Annu Rev Food Sci Technol 2020; 11: 119-143.
78. Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. Nutrients 2020; 12: 1158.
79. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota metabolism and interaction with food components. Int J Mol Sci 2020; 21: 3688.
80. Stiemsma LT, Nakamura RE, Nguyen JG, Michels KB. Does consumption of fermented foods modify the human gut microbiota. J Nutr 2020; 150: 1680-1692.
81. Xu Y, Zhu Y, Li X, Sun B. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends Food Sci Technol 2020; 100: 118-130.
82. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7: 639-646.
83. Wang Y, Jiang Y, Deng Y, Yi C, Wang Y, Ding M, et al. Probiotic supplements: hope or hype? Front Microbiol 2020; 11: 160.
84. Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 2013; 6: 39-51.
85. Verna EC, Lucak S. Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol 2010; 3: 307-319.
86. Maity C, Gupta PhD AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J, et al. Impact of a gastrointestinal stable probiotic supplement Bacillus coagulans LBSC on human gut microbiome modulation. J Diet Suppl 2021; 18: 577-596.
87. Liang X, Zhang Z, Zhou X, Lu Y, Li R, Yu Z, et al. Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR. Food Funct 2020; 11: 9903-9911.
88. Sánchez B, Delgado S, Blanco‐Míguez A, Lourenço A, Gueimonde M, Margolles AProbiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 2017;61: 10.1002/mnfr.201600240.
89. Ben Braïek O, Smaoui S. Enterococci: between emerging pathogens and potential probiotics. Biomed Res Int 2019; 2019: 5938210.
90. Khan S, Moore RJ, Stanley D, Chousalkar KK. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl Environ Microbiol 2020; 86(13): e00600-20.
91. Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ. Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. J Probiotics Health 2017; 5: 159.
92. Khodaii Z, Ghaderian SMH, Natanzi MM. Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli (EIEC) invasion. Int J Mol Cell Med 2017; 6 :183-189.
93. Chugh B, Kamal-Eldin A. Bioactive compounds produced by probiotics in food products. Curr Opin Food Sci 2020; 32:76-82.
94. Halami PM. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microb Pathog 2019; 128: 139-146.
95. Pérez-Burillo S, Mehta T, Pastoriza S, Kramer DL, Paliy O, Rufián-Henares JÁ. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure. LWT 2019; 105: 355-362.
IssueVol 14 No 1 (2022) QRcode
SectionReview Article(s)
Coronavirus disease 2019; Gut microbiota; Lung axis; Central nervous system; Probiotic

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Alibeik N, Pishgar E, Bozorgmehr R, Aghaaliakbari F, Rahimian N. Potential role of gut microbiota in patients with COVID-19, its relationship with lung axis, central nervous system (CNS) axis, and improvement with probiotic therapy. Iran J Microbiol. 2022;14(1):1-9.