Original Article

Crude sulfated polysaccharides extracted from marine cyanobacterium Oscillatoria simplicissima with evaluation antioxidant and cytotoxic activities

Abstract

Background and Objectives: Microalgae have been widely used as a novel source of bioactive substances. These substances exhibit various biological actions including, antioxidant and antitumor effects material. The present work is carried out to evaluate potential applications of cyanobacterium Oscillatoria simplicissima containing mainly polysaccharides.
Materials and Methods: Crude polysaccharides from marine cyanobacteria Oscillatoria simplicissima and Oscillatoria acutissima were extracted and characterized according to their chemical content and cytotoxic activities. The isolated polysaccharides characterized by the Fourier transmittance infrared spectrum (FT-IR).
Results: These polysaccharides constituted 34.68 mg/g of sugar, 0.011 mg/g of protein, and 28.92 mg/g of sulfate contents. The antioxidant property of the methanol extracts of these green microalgae was evaluated by measuring the free radical scavenging activity by the DPPH assay method. The algal extracts were then evaluated for their suppressive effect on tumor cell growth (A-549, MDA-MB-231, PC-3, HT-29, HepG2, and HeLa) by using the SRB assay. At a concentration of 10 mg/mL, Oscillatoria simplicissima exhibits an antioxidant activity of 45.97%. The cytotoxic activity revealed that Oscillatoria simplicissima polysaccharide shows potent cytotoxic activity against lung cancer (A-549) cell line 49.465 μg/mL.
Conclusion: Microalgal polysaccharides have great therapeutically potential in drug development used as antitumor and antioxidant agents in near future.

1. Marrez DA, Sultan YY, Embaby MA. Biological activity of the cyanobacterium Oscillatoria brevis extracts as a source of nutraceutical and biopreservative agents. Int J Pharmacol 2017;13: 1010-1019.
2. Sultan Y, Ali MA, Darwesh O, Embaby M, Marrez D. Influence of nitrogen source in culture media on antimicrobial activity of Microcoleus lacustris and Oscillatoria rubescens. J Pharm Biol Chem Sci 2016;7: 1444-1452.
3. Ngo DH , Kim SK. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 2013;62: 70-75.
4. Zhu T, Heo HJ, Row KH. Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology. Carbohydr Polym 2010;82: 106-110.
5. Zhao C, Gao L, Wang C, Liu B, Jin Y, Xing Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondose against enterovirus 71. Carbohydr Polym 2016,144: 382-389.
6. Nailwal S, Nailwal TK. Evaluation of antioxidant capacity and total phenolic content of selected microalgae of Kumaun himalayan region. Int J Pharm Bio Sci 2013;4: 349-355.
7. Xu N, Fan X, Yan X, Tseng CK. Screening marine algae from China for their antitumor activities. J Appl Phycol 2004;16: 451-456.
8. Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol 2018;9: 3.
9. Mohamed S, Hasim SN, Rahman HA. Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 2012;23: 83-96.
10. Zhao X, Pang S, Liu F, Shan T, Li J. Biological identification and determination of optimum growth conditions for four species of Navicula. Acta Oceanol Sin 2014;33: 111-118.
11. Cronberg G, Annadotter H. Manual on aquatic cyanobacteria. ISSHA 2006;106 pp.
12. Khaleghi E, Arzani K, Moallemi N, Barzegar M. Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. WASET 2012;68: 1154-1157.
13. Shi Y, Sheng J, Yang F, Hu Q. Purification and identification of polysaccharide from Chlorella pyrenoidosa. Food Chem 2007;103: 101-105.
14. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Calorimetric dubois method for determination of sugar and related substances. Anal Chem 1956;28: 350-356.
15. Jaswir I, Monsur HA, Simsek S, Amid A, Alam Z, bin Salleh MN, et al. Cytotoxicity and inhibition of nitric oxide in lipopolysaccharide induced mammalian cell lines by aqueous extracts of brown seaweed. J Oleo Sci 2014;63: 787-794.
16. Pothiraj C, Balaji P, Eyini M. Raw starch degrading amylase production by various fungal cultures grown on cassava waste. Mycobiology 2006;34: 128-130.
17. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 2011;48: 412-422.
18. Kasangana PB, Haddad PS, Stevanovic T. Study of polyphenol content and antioxidant capacity of Myrianthus Arboreus (Cecropiaceae) root bark extracts. Antioxidants (Basel) 2015;4: 410-426.
19. Benassi L, Magnoni C, Giudice S, Giorgia B, Bertazzoni G, Costi MP, et al. Pharmacological and toxicological evaluation of a new series of thymidylate synthase inhibitors as anticancer agents. Anticancer Res 2006;26: 3499-3504.
20. Allam RM, Al-Abd AM, Khedr A, Sharaf OA, Nofal SM, Khalifa AE, et al. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol Lett 2018;291: 77-85.
21. Becker EW (2008). Microalgae: biotechnology and microbiology. 1st ed. Cambridge: University press. Cambridge. UK.
22. Faidi K, Hammami S, Ben Salem A, El Mokni R, Garrab M, Mastouri M, et al. Polyphenol derivatives from bioactive butanol phase of the Tunisian narrow-leaved asphodel (Asphodelus tenuifolius Cav., Asphodelaceae). J Med Plants Res 2014;8: 550-557.
23. Barbarino E, Lourenco SO. An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 2005;17: 447-460.
24. Picardo MC, de Medeiros JL, Araújo Ode Q, Chaloub RM. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol 2013;143: 242-250.
25. Custódio L, Soares F, Pereira H, Rodrigues MJ, Barreira L, Rauter AP, et al. Botryococcus braunii and Nannochloropsis oculate extracts inhibit cholinesterases and protect humandopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity. J Appl Phycol 2015;27: 839-848.
26. Balavigneswaran CK, Sujin Jeba Kumar T , Moses Packiaraj R, Veeraraj A, Prakash S. Anti-oxidant activity of polysaccharides extracted from Isocrysis galbana using RSM optimized condition. Int J Biol Macromol 2013;60: 100-108.
27. Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 2005;37: 195-199.
28. Zhang J, Hou X, Ahmad H, Zhang H, Zhang L, Wang T. Assessment of free radicals scavenging activity of seven natural pigments and protective effects in AAPH-challenged chicken erythrocytes. Food Chem 2014;145: 57-65.
29. Chen Y, Zhang H, Wang Y, Nie S, Li C, Xie M. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem 2014,156: 279-288.
30. Ramawat KG, Mérillion JM (2019). Polysacharides: bioactivity and biotechnology. 1st ed. Springer International Publishing: Cham, Switzerland.
31. Faulkner DJ. Marine natural products. Nat Prod Rep 2002;19: 1-48.
32. Kang Y, Wang ZJ, Xie D, Sun X, Yang W, Zho X, et al. Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. Mar Drugs 2017;15: 100.
33. Fenoradosoa TA, Delattre C, Laroche C, Wadouachi A, Dulong V, Picton L, et al. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int J Biol Macromol 2009;45: 140-145.
34. Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 2010;345: 2194-2200.
35. Yue CH, Fang Y, Lin H, Chen L, Li ZJ, Deng D. et al. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J Appl Phycol 2001;13: 67-70.
36. Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agent: an update on the anticancer effects reported for fucoidan and laminaran. Carbohydr polym 2017;177: 451-459.
37. Miao EA, Rajan JV, Aderem A. Caspase-1 induced pyroptotic cell death. Immunol Rev 2011;243: 206-214.
38. Ismail MM, Gheda SF, Pereira L. Variation in bioactive compounds in some seaweeds from Abo Qir bay, Alexandria, Egypt. Rend Lincei-SciFis 2016;27: 269-279.
39. Ye H, Wang K, Zhou C, Liu J, Zeng X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 2008;111: 428-432.
Files
IssueVol 13 No 4 (2021) QRcode
SectionOriginal Article(s)
Published2021-08-11
DOI https://doi.org/10.18502/ijm.v13i4.6983
Keywords
Marine microalgae; Polysaccharides; Antioxidant; Cytotoxic activities

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Elkomy R, Ismail M. Crude sulfated polysaccharides extracted from marine cyanobacterium Oscillatoria simplicissima with evaluation antioxidant and cytotoxic activities. Iran J Microbiol. 2021;13(4):553-559.