Original Article

Antibacterial effect of carbon nanotube containing chemical compounds on drug-resistant isolates of Acinetobacter baumannii


Background and Objectives: Acinetobacter baumannii is recognized as an important pathogen responsible for serious infections causing episodes of hospital infection. Carbon nanotubes (CNTs) have recently emerged as superior materials against antibiotic-resistant bacteria. In this study, a new chemical compound was designed in order to combat A. baumannii infections. Subsequently, the effect of this novel carbon nanotube coated with an antibacterial compound on Extensively Drug-Resistant (XDR), Multidrug-Resistant (MDR) and Pan-Drug-Resistance (PDR) strains of A. baumannii was investigated.
Materials and Methods: A total of 122 clinical isolates of A. baumannii were cultured from burn patients and their susceptibility to antibiotics were checked using disk diffusion method and Minimum inhibitory concentration. Antimicrobial effects of the coated carbon nanotube were evaluated on XDR, MDR and PDR isolates of A. baumannii. Cell viability was determined using tetrazolium reduction assay (MTT) on human fibroblast cell line (HDFa). Wound healing processes were assessed by quantitative polymerase chain reaction.
Results: Of the 50 A. baumannii isolates, 38 (76%) were found to be MDR and 12 (24%) were XDR. No PDR strains were detected. Results indicated that the carbon nanotube combined with mercury had antibacterial effect against different A. baumannii species and it also was able to increase the expression of epidermal growth factor, platelet-derived growth factor and vascular endothelial growth factor A mRNA levels which are involved in wound healing.
Conclusion: The engineered carbon nanotube compound can potentially be used for treatment of burn related infections. This can potentially give clinicians a new tool for treating A. baumannii infections.

1. Organization WH. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017-2018. World Health Organization; 2018. https://www.who.int/glass/resources/publications/early-implementation-report-2017-2018/en
2. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417-433.
3. Wardhana A, Djan R, Halim Z. Bacterial and antimicrobial susceptibility profile and the prevalence of sepsis among burn patients at the burn unit of Cipto Mangunkusumo Hospital. Ann Burns Fire Disasters 2017;30:107-115.
4. Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 2012;3:243-250.
5. Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. J Glob Infect Dis 2010;2:291-304.
6. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148-165.
7. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007;5:939-951.
8. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 2011;63:1055-1060.
9. Farooq S, Mehmood Z, Qais FA, Khan MS, Ahmad I (2019). Nanoparticles in Ayurvedic Medicine: Potential and Prospects. In: New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads. Ed, MS Ahmad Khan, I Ahmad, D Chattopadhyay. Academic Press Publishing, 1st ed. Revaluation Books Exeter, UK, pp. 581-596.
10. Rio-Echevarria IM, Ponti J, Urbán P, Gilliland D. Vial sonication and ultrasonic immersion probe sonication to generate stable dispersions of multiwall carbon nanotubes for physico-chemical characterization and biological testing. Nanotoxicology 2019;13:923-937.
11. Liu Z, Tabakman S, Welsher K, Dai HJNr. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85-120.
12. Cambre S, Campo J, Botka B, van Werveke W, Obrzut J, Wenseleers W, et al., editors. Controlling the Inner Dielectric Environment of Carbon Nanotubes to Tune Their Optical Properties. Meeting Abstracts; 2019: The Electrochemical Society.
13. Lam P, Lu G-L, Choi K, Lin Z, Kok S, Lee K, et al. Antimicrobial and toxicological evaluations of binuclear mercury (II) bis (alkynyl) complexes containing oligothiophenes and bithiazoles. RSC Adv 2016;6:16736-16744.
14. Salas-Orozco M, Niño-Martínez N, Martínez-Castañón G-A, Méndez FT, Jasso MEC, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater 2019;2019:7630316.
15. Chiang MC, Kuo SC, Chen YC, Lee YT, Chen TL, Fung CP. Polymerase chain reaction assay for th detection of Acinetobacter baumannii in endotracheal aspirates from patients in the intensive care unit. J Microbiol Immunol Infect 2011; 44: 106-110.
16. Gill J, Arora S, Khanna S, Kumar KH. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level intensive care unit. J Glob Infect Dis 2016;8:155-159.
17. Taheriha M, Ghadermazi M, Amani V. Dimeric and polymeric mercury (II) complexes of 1-methyl-1, 2, 3, 4-tetrazole-5-thiol: Synthesis, crystal structure, spectroscopic characterization, and thermal analyses. J Mol Struct 2016;1107:57-65.
18. Golberg A, Broelsch GF, Vecchio D, Khan S, Hamblin MR, Austen WG Jr, et al. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology (Singap World Sci) 2014;2:153-160.
19. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol 2003;41:3542-3547.
20. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21:538-582.
21. Montefour K, Frieden J, Hurst S, Helmich C, Headley D, Martin M, et al. Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 2008;28:15-25; quiz 26.
22. McCracken M, DeCorby M, Fuller J, Loo V, Hoban D, Zhanel G, et al. Identification of multidrug-and carbapenem-resistant Acinetobacter baumannii in Canada: results from CANWARD 2007. J Antimicrob Chemother 2009;64:552-555.
23. Naas T, Bogaerts P, Bauraing C, Degheldre Y, Glupczynski Y, Nordmann P. Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemother 2006;58:178-182.
24. Naas T, Coignard B, Carbonne A, Blanckaert K, Bajolet O, Bernet C, et al. VEB-1 extended-spectrum β-lactamase–producing Acinetobacter baumannii, France. Emerg Infect Dis 2006;12:1214-1222.
25. Naas T, Namdari F, Réglier-Poupet H, Poyart C, Nordmann P. Panresistant extended-spectrum β-lactamase SHV-5-producing Acinetobacter baumannii from New York City. J Antimicrob Chemother 2007;60:1174-1176.
26. Huys G, Cnockaert M, Nemec A, Dijkshoorn L, Brisse S, Vaneechoutte M, et al. Repetitive-DNA-element PCR fingerprinting and antibiotic resistance of pan-European multi-resistant Acinetobacter baumannii clone III strains. J Med Microbiol 2005;54:851-856.
27. Ning NZ, Liu X, Bao CM, Chen SM, Cui EB, Zhang JL, et al. Molecular epidemiology of bla OXA-23 -producing carbapenem-resistant Acinetobacter baumannii in a single institution over a 65-month period in north China. BMC Infect Dis 2017;17:14.
28. Zander E, Chmielarczyk A, Heczko P, Seifert H, Higgins PG. Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. J Antimicrob Chemother 2013;68:308-311.
29. Kasiakou SK, Michalopoulos A, Soteriades ES, Samonis G, Sermaides GJ, Falagas ME. Combination therapy with intravenous colistin for management of infections due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis. Antimicrob Agents Chemother 2005;49:3136-3146.
30. Yin X-L, Hou T-W, Xu S-B, Ma C-Q, Yao Z-Y, Li W, et al. Detection of drug resistance–associated genes of multidrug-resistant Acinetobacter baumannii. Microb Drug Resist 2008;14:145-150.
31. Ayan M, Durmaz R, Aktas E, Durmaz B. Bacteriological, clinical and epidemiological characteristics of hospital-acquired Acinetobacter baumannii infection in a teaching hospital. J Hosp Infect 2003;54:39-45.
32. Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, et al. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother 2008;52:3837-3843.
33. Huang H, Yuan Q, Shah J, Misra RD. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 2011;63:1332-1339.
34. Milne FJ. Thoughts and observations on counter‐irritation in the horse. J Vet Med B Infect Dis Vet Public Health 1961;8:1095-1140.
35. Sobouti B, Mirshekar M, Fallah S, Tabaei A, Fallah Mehrabadi J, Darbandi A. Pan drug-resistant Acinetobacter baumannii causing nosocomial infections among burnt children. Med J Islam Repub Iran 2020;34:24.
36. Zeinali Aghdam S, Minaeian S, Sadeghpour Karimi M, Tabatabaee Bafroee AS. The antibacterial effects of the mixture of silver nanoparticles with the shallot and nettle alcoholic extracts. J Appl Biotechnol Rep 2019;6:158-164.
37. Banihashemi K, Sobouti B, Mehregan I, Bakhtiari R, Amirmozafari N. The construction of carbon nanotubes containing an anti-bacterial chemical component and its effect on MDR and XDR isolates of Pseudomonas aeruginosa. Rep Biochem Mol Biol 2020;9:89-96.
IssueVol 13 No 1 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijm.v13i1.5501
Acinetobacter baumannii; Carbon nanotubes; Infections; Anti-bacterial agents; Wound healing; Real time polymerase chain reaction

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Banihashemi K, Amirmozafari N, Mehregan I, Bakhtiari R, Sobouti B. Antibacterial effect of carbon nanotube containing chemical compounds on drug-resistant isolates of Acinetobacter baumannii. Iran J Microbiol. 2021;13(1):112-120.