The potency of luliconazole against clinical and environmental Aspergillus nigri complex
Abstract
Background and Objectives: Black Aspergillus strains including, Aspergillus niger and A. tubingensis, are the most cause of otomycosis with worldwide distribution. Although, amphotericin B was a Gold standard for the treatment of invasive fungal infection for several decades, it gradually replaced by fluconazole and /or voriconazole. Moreover, luliconazole, appears to offer the best potential for in vitro activity against black Aspergillus strains. The aim of the present study was to compare the in vitro activity luliconazole, with commonly used antifungals against clinical and environmental strains of black Aspergillus.
Materials and Methods: Sixty seven (37 clinical and 30 environmental) strains of black Aspergillus were identified using morphological and molecular technique (β-Tubulin gene). In addition, antifungal susceptibility test was applied according to CLSI M38 A2. The results were reported as minimum inhibitory concentration (MIC) or minimum effective concentration (MEC) range, MIC50 or MEC50, MIC90 or MEC90 and MIC geometric (GM) or MECGM.
Results: Aspergillus niger was the common isolate followed by, A. tubingensis in both clinical and environmental strains. The lowest MIC range, MIC50, MIC90, and MICGM was attributed to luliconazole in clinical strains. The highest resistant rate was found in amphotericin B for both clinical (86.5%) and environmental (96.7%) strains whereas 54.1% of clinical and 30% of environmental isolates were resistant to caspofungin. Clinical strains of Aspergillus were more sensitive to voriconazole (86.7%) than environmental strains (70.3%). On the other hand, 83.8% of clinical and 70% of environmental isolates were resistant to posaconazole.
Conclusion: Luliconazole versus amphotericin B, voriconazole, posaconazole and caspofungin is a potent antifungal for Aspergillus Nigri complex. The in vitro extremely antifungal efficacy against black Aspergillus strains of luliconazole, is different from those of other used antifungals.
2. Koga H, Nanjoh Y, Kaneda H, Yamaguchi H, Tsuboi R. Short-term therapy with luliconazole, a novel topical antifungal imidazole, in guinea pig models of tinea corporis and tinea pedis. Antimicrob Agents Chemother 2012;56:3138-3143.
3. Abastabar M, Rahimi N, Meis JF, Aslani N, Khodavaisy S, Nabili M, et al. Potent activities of novel imidazoles lanoconazole and luliconazole against a collection of azole-resistant and -susceptible Aspergillus fumigatus strains. Antimicrob Agents Chemother 2016;60:6916-6919.
4. Hagiwara S, Tamura T, Satoh K, Kamewada H, Nakano M, Shinden S, et al. The molecular identification and antifungal susceptibilities of Aspergillus species causing otomycosis in Tochigi, Japan. Mycopathologia 2019; 184: 13-21.
5. Zargaran M, Taghipour S, Kiasat N, Aboualigalehdari E, Rezaei-Matehkolaei A, Zarei Mahmoudabadi A, et al. Luliconazole, an alternative antifungal agent against aspergillus terreus. J Mycol Med 2017;27:351-356.
6. Omran SM, Taghizadeh-Armaki M, Zarrinfar H, Hedayati MT, Abastabar M, Moqarabzadeh V, et al. In-vitro antifungal susceptibility testing of lanoconazole and luliconazole against aspergillus flavus as an important agent of invasive aspergillosis. J Infect Chemother 2019;25:157-160.
7. Khanna D, Bharti S. Luliconazole for the treatment of fungal infections: An evidence-based review. Core Evid 2014;9:113-124.
8. Scher RK, Nakamura N, Tavakkol A. Luliconazole: A review of a new antifungal agent for the topical treatment of onychomycosis. Mycoses 2014;57:389-393.
9. Ellis D. Amphotericin b: Spectrum and resistance. J Antimicrob Chemother 2002;49 Suppl 1:7-10.
10. Arikan S, Sancak B, Alp S, Hascelik G, McNicholas P. Comparative in vitro activities of posaconazole, voriconazole, itraconazole, and amphotericin b against aspergillus and rhizopus, and synergy testing for rhizopus. Med Mycol 2008;46:567-573.
11. Maertens J, Raad I, Petrikkos G, Boogaerts M, Selleslag D, Petersen FB, et al. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis 2004;39:1563-1571.
12. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann J-W, et al. Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis. N Engl J Med 2002;347:408-415.
13. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: An externally controlled trial. Clin Infect Dis 2007;44:2-12.
14. Egerer G, Reichert D, Pletz MW, Kaskel P, Krobot KJ, Maertens J. Caspofungin for treatment of invasive aspergillosis in germany: Results of a pre-planned subanalysis of an international registry. Eur J Med Res 2012;17:7.
15. Hashimoto A, Hagiwara D, Watanabe A, Yahiro M, Yikelamu A, Yaguchi T, et al. Drug sensitivity and resistance mechanism in aspergillus section nigri strains from Japan. Antimicrob Agents Chemother 2017;61(8): e02583-16.
16. Gautier M, Normand AC, L'Ollivier C, Cassagne C, Reynaud-Gaubert M, Dubus JC, et al. Aspergillus tubingensis: A major filamentous fungus found in the airways of patients with lung disease. Med Mycol 2016;54:459-470.
17. D'Hooge E, Becker P, Stubbe D, Normand AC, Piarroux R, Hendrickx M. Black aspergilli: A remaining challenge in fungal taxonomy? Med Mycol 2019;57:773-780.
18. Varga J, Frisvad JC, Kocsube S, Brankovics B, Toth B, Szigeti G, et al. New and revisited species in aspergillus section nigri. Stud Mycol 2011;69:1-17.
19. Castro C, Galan-Sanchez F, Linares MJ, Tejero R, Ruiz M, Serrano ML, et al. A prospective survey of Aspergillus spp. In respiratory tract samples: Species identification and susceptibility patterns. Med Mycol 2019;57:412-420.
20. Ali K, Hamed MA, Hassan H, Esmail A, Sheneef A. Identification of fungal pathogens in otomycosis and their drug sensitivity: Our experience. Int Arch Otorhinolaryngol 2018;22:400-403.
21. Badali H, Fakhim H, Zarei F, Nabili M, Vaezi A, Poorzad N, et al. In vitro activities of five antifungal drugs against opportunistic agents of aspergillus nigri complex. Mycopathologia 2016;181:235-240.
22. Vermeulen E, Maertens J, Meersseman P, Saegeman V, Dupont L, Lagrou K. Invasive Aspergillus niger complex infections in a belgian tertiary care hospital. Clin Microbiol Infect 2014;20:O333-O335.
23. Koehler P, Tacke D, Cornely OA. Aspergillosis of bones and joints - a review from 2002 until today. Mycoses 2014;57:323-335.
24. Simmonds L, Mitchell S, White B, Crusz SA, Denning D. Aspergillus niger infection in an immunosuppressed patient confined solely to the brain. BMJ Case Rep 2017;2017: bcr2016218658.
25. Ugurlu S, Maden A, Sefi N, Sener G, Yulug N. Aspergillus niger infection of exenterated orbit. Ophthalmic Plast Reconstr Surg 2001;17:452-453.
26. Atchade E, Jean-Baptiste S, Houze S, Chabut C, Massias L, Castier Y, et al. Fatal invasive aspergillosis caused by Aspergillus niger after bilateral lung transplantation. Med Mycol Case Rep 2017;17:4-7.
27. Peghin M, Monforte V, Martin-Gomez MT, Ruiz-Camps I, Berastegui C, Saez B, et al. 10 years of prophylaxis with nebulized liposomal amphotericin b and the changing epidemiology of Aspergillus spp. Infection in lung transplantation. Transpl Int 2016;29:51-62.
28. Martin-Mazuelos E, Peman J, Valverde A, Chaves M, Serrano MC, Canton E. Comparison of the sensititre yeastone colorimetric antifungal panel and etest with the nccls m38-a method to determine the activity of amphotericin b and itraconazole against clinical isolates of Aspergillus spp. J Antimicrob Chemother 2003;52:365-370.
29. Van Der Linden JW, Warris A, Verweij PE. Aspergillus species intrinsically resistant to antifungal agents. Med Mycol 2011;49 Suppl 1:S82-89.
30. Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanazawa R, et al. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1999;37:920-924.
31. Glass NL, Donaldson GC. Development of primer sets designed for use with the pcr to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-1330.
32. Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Brown SD, Chaturveli V, Espinel-Ingroff A, Ghannoum MA, Knapp CC, Motyl MR, Ostrosky-Zeichner L, Pfaller M, Sheehan DJ, Walsh TJ. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 3rd Ed., 2008;28(16) [Approved standard-third, edition, M38-A2].
33. Lass-Florl C. Susceptibility testing in aspergillus species complex. Clin Microbiol Infect 2014;20 Suppl 6:49-53.
34. Espinel-Ingroff A, Cuenca-Estrella M, Fothergill A, Fuller J, Ghannoum M, Johnson E, et al. Wild-type mic distributions and epidemiological cutoff values for amphotericin b and Aspergillus spp. For the clsi broth microdilution method (m38-a2 document). Antimicrob Agents Chemother 2011;55:5150-5154.
35. Espinel-Ingroff A, Diekema DJ, Fothergill A, Johnson E, Pelaez T, Pfaller MA, et al. Wild-type mic distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. For the clsi broth microdilution method (m38-a2 document). J Clin Microbiol 2010;48:3251-3257.
36. Espinel-Ingroff A, Fothergill A, Fuller J, Johnson E, Pelaez T, Turnidge J. Wild-type mic distributions and epidemiological cutoff values for caspofungin and Aspergillus spp. For the clsi broth microdilution method (m38-a2 document). Antimicrob Agents Chemother 2011;55:2855-2859.
37. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. In vitro susceptibility of clinical isolates of Aspergillus spp. To anidulafungin, caspofungin, and micafungin: A head-to-head comparison using the clsi m38-a2 broth microdilution method. J Clin Microbiol 2009;47:3323-3325.
38. Blum G, Perkhofer S, Haas H, Schrettl M, Wurzner R, Dierich MP, et al. Potential basis for amphotericin b resistance in Aspergillus terreus. Antimicrob Agents Chemother 2008;52:1553-1555.
39. Kaya AD, Kiraz N. In vitro susceptibilities of Aspergillus spp. Causing otomycosis to amphotericin b, voriconazole and itraconazole. Mycoses 2007;50:447-450.
40. Baddley JW, Marr KA, Andes DR, Walsh TJ, Kauffman CA, Kontoyiannis DP, et al. Patterns of susceptibility of Aspergillus isolates recovered from patients enrolled in the transplant-associated infection surveillance network. J Clin Microbiol 2009;47:3271-3275.
41. Szigeti G, Sedaghati E, Mahmoudabadi AZ, Naseri A, Kocsube S, Vagvolgyi C, et al. Species assignment and antifungal susceptibilities of black Aspergilli recovered from otomycosis cases in iran. Mycoses 2012;55:333-338.
42. Szigeti G, Kocsube S, Doczi I, Bereczki L, Vagvolgyi C, Varga J. Molecular identification and antifungal susceptibilities of black Aspergillus isolates from otomycosis cases in hungary. Mycopathologia 2012;174:143-147.
43. Baghi N, Shokohi T, Badali H, Makimura K, Rezaei-Matehkolaei A, Abdollahi M, et al. In vitro activity of new azoles luliconazole and lanoconazole compared with ten other antifungal drugs against clinical dermatophyte isolates. Med Mycol 2016;54:757-763.
44. Taghipour S, Kiasat N, Shafiei S, Halvaeezadeh M, Rezaei-Matehkolaei A, Zarei Mahmoudabadi A. Luliconazole, a new antifungal against candida species isolated from different sources. J Mycol Med 2018;28:374-378.
45. Vaezi A, Fakhim H, Arastehfar A, Shokohi T, Hedayati MT, Khodavaisy S, et al. In vitro antifungal activity of amphotericin b and 11 comparators against Aspergillus terreus species complex. Mycoses 2018;61:134-142.
46. Araujo R, Pina-Vaz C, Rodrigues AG. Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int J Antimicrob Agents 2007;29:108-111.
47. Misra R, Malik A, Singhal S. Comparison of the activities of amphotericin b, itraconazole, and voriconazole against clinical and environmental isolates of Aspergillus species. Indian J Pathol Microbiol 2011;54:112-116.
Files | ||
Issue | Vol 11 No 6 (2019) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v11i6.2223 | |
Keywords | ||
Black Aspergillus strains; Luliconazole; Clinical and environmental isolates; Antifungal profile |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |