Detection of VIM-1, VIM-2 and IMP-1 metallo- β-lactamase genes in Klebsiella pneumoniae isolated from clinical samples in Sanandaj, Kurdistan, west of Iran
Abstract
Background and Objectives: Klebsiella pneumoniae is an important cause of serious nosocomial infections among Gram-negative bacteria. The aim of this study was evaluating the prevalence of VIM-1, VIM-2, and IMP-1 metallo-β-lactamase genes in clinical specimens at two teaching hospitals in Sanandaj, Kurdistan west of Iran.
Materials and Methods: Four hundred different clinical specimens were collected from hospitalized patients or referred to hospitals from May 2013 to March 2014 in Sanandaj, Kurdistan, Iran. MBLs – producing K. pneumoniae detected by Double Disk Synergy Test. The MBL positive isolates were examined for the presence of VIM-1, VIM-2 and IMP-1 genes using PCR technique.
Results: Of four hundred clinical specimens, 114 K. pneumoniae isolates were identified. Twenty-eight (24.6%) isolates were resistant to imipenem and 15 strains (53.6%) were positive for MBL enzymes production. PCR results showed VIM-1 and IMP-1 genes frequencies are 4 (26.7%) and 1 (6.7%). Only one strain of K. pneumoniae was found to be MBL producer among the outpatients.
Conclusion: The study results exhibited a high level of resistance to most of the antibiotics tested and high prevalence of MBLs producing in K. pneumoniae at two hospitals. Thus, the infection control methods and the implementation of antibiotic agents should be taken into account.
2. Rastegar Lari A, Azimi L, Rahbar M, Fallah F, Alaghehbandan R. Phenotypic detection of Klebsiella pneumoniae carbapenemase among burns patients: First report from Iran. Burns 2013; 39:174-176.
3. Bush K, Jacoby GA. Updated functional classification of ß-lactamases. Antimicrob Agents Chemother 2010; 54:969-976.
4. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289: 321-331.
5. Lee K, Ha GY, Shin BM, Kim JJ, Kang JO, Jang SJ, et al. Metallo-β-lactamase-producing Gram-negative bacilli in Korean nationwide surveillance of antimicrobial resistance group hospitals in 2003: Continued prevalence of VIM-producing pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn Microbiol Infect Dis 2004; 50:51-58.
6. Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes 2014; 7:557.
7. Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2004; 48: 131-135.
8. Japoni-Nejad A, Ghaznavi-Rad E, van Belkum A. Characterization of plasmid-mediated AmpC and Carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res Perspect 2014; 5: 333-338.
9. Lee K, Chong Y, Shin H B, Kim Y A, Yong D, Yum JH. Modified hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7: 88-91.
10. Walsh TR, Bolmstrom A, Qwarnstrom A, Gales A. Evaluation of a new E-test for detecting metallo-β-lactamases in routine clinical testing. J Clin Microbiol 2002; 40:2755-2759.
11. Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S, et al. PCR detection of metallo-lactamase gene blaIMP gram-negative rods resistant to broad-spectrum βlactams. J Clin Microbiol 1996; 34: 2909-2913.
12. Isenberg HD. Clinical microbiology: past, present, and future. J Clin Microbiol 2003; 41:917-918.
13. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing twenty-fourth informational supplement document. Wayne Pu Publication.2014; P.100-24.
14. Chandrasekaran S, Abbott A, Campeau S, Zimmer BL, Weinstein M, Thrupp L, et al. Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of Gram-negative bacteria: preliminary report from the clinical and laboratory standards institute methods development and standardization working group. J Clin Microbiol 2018; 56(3): e01678-17.
15. Sung K, Khan SA, Nawaz MS, Khan AA. A simple and efficient Triton X-100 boiling and chloroform extraction method of RNA isolation from Gram-positive and Gram-negative bacteria. FEMS Microbiol Lett 2003; 229:97-101.
16. Salimi F, Eftekhar F. Prevalence of blaIMP, and blaVIM gene carriage in metallo-β-lactamase-producing burn isolates of Pseudomonas aeruginosa in Tehran. Turk J Med Sci 2014; 44:511-514.
17. Rai S, Manchanda V, Singh NP, Kaur IR. Zinc-dependent carbapenemases in clinical isolates of family Enterobacteriaceae. Indian J Med Microbiol 2011; 29: 275-279.
18. Sampaio JL, Gales AC. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol 2016; 47(Suppl 1): 31-37.
19. Khodadadian R, Rahdar H A, Javadi A, Mahmod S, Khorshidi A. Detection of VIM-1 and IMP-1 genes in Klebsiella pneumoniae and relationship with biofilm formation. Microb Pathog 2018; 115: 25-30.
20. Shashwati N, Kiran T, Dhanvijay AG. Study of extended spectrum β-lactamase producing Enterobaceriaceae and antibiotic co-resistance in a tertiary care teaching hospital. J Nat Sci Biol Med 2014; 5: 30-35.
21. Ghaffarian F, Hedayati M, Sedigh Ebrahim-Saraie H, Atrkar Roushan Z, Mojtahedi A. Molecular epidemiology of ESBL-producing Klebsiella pneumoniae isolates in intensive care units of a tertiary care hospital, north of Iran. Cell Mol Biol (Noisy-le-grand) 2018; 64:75-79.
22. Rajabnia R, Asgharpour F, Ferdosi E, Moulana Z. Nosocomial emerging of (VIM1) carbapenemase-producing isolates of Klebsiella pneumoniae in north of Iran. Iran J Microbiol 2015; 7:88-93.
23. Lorenzoni VV, Rubert FDC, Rampelotto RF, Hörner R. Increased antimicrobial resistance in Klebsiella pneumoniae from a University Hospital in Rio Grande do Sul, Brazil. Rev Soc Bras Med Trop 2018; 51:676-679.
24. Brusselaers N, Vogelaers D, Blot S. The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 2011; 1:47.
25. I-Ling T, Yu-Mei L, Shiow-Jen W, Hung-Yi Y, Chia-Lun H, Hsueh-Lin, et al. Emergence of carbapenemase producing Klebsiella pneumonia and spread of KPC-2 and KPC-17 in Taiwan: A nationwide study from 2011 to 2013. PLoS One 2015; 10(9):e0138471.
26. Datta P, Gupta V, Garg S, Chander J. Phenotypic method for differentiation of carbapenemases in Enterobacteriaceae: Study from north India. Indian J Pathol Microbiol 2012: 55:357-360.
27. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerg Health Threats J 2015; 8: 26011.
28. Ikegbunam MN, Anagu LO, Iroha IR, Ejikeugwu CE, Esimone CO. Abattoirs as non-hospital source of extended spectrum beta lactamase producers: confirmed by the double disc synergy test and characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry. PLoS One 2014; 9(4):e94461.
29. Lascols C, Peirano G, Hackel M, Laupland K B, Pitout J D. Surveillance and molecular epidemiology of Klebsiella pneumoniae that produce carbapenemases; the first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother 2013; 57:130-136.
30. Jin Young L, Ji Young P, Je Hun K, Young H L, Hee Young Y, Jung Sik Y. Outbreak of Imipenemase-1-producing carbapenem-resistant Klebsiella pneumoniae in an intensive care unit. Korean J Crit Care Med 2017; 32:29-38.
Files | ||
Issue | Vol 11 No 3 (2019) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijm.v11i3.1325 | |
Keywords | ||
Klebsiella pneumoniae Carbapenem-resistan blaVIM bla IMP |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |