Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran
Abstract
Background and Objectives: Pseudomonas aeruginosa, a major cause of several infectious diseases, has become a hazardous resistant pathogen. One of the factors contributing to quinolone resistance in P. aeruginosa is mutations occurring in gyrA and parC genes encoding the A subunits of type II and IV topoisomerases, respectively, in quinolone resistance determining regions (QRDR) of the bacterial chromosome.
Materials and Methods: Thirty seven isolates from patients with burn wounds and 20 isolates from blood, urine and sputum specimen were collected. Minimum Inhibitory Concentrations (MICs) of ciprofloxacin were determined by agar diffusion assay. Subsequently, QRDRs regions of gyrA and parC were amplified from resistant isolates and were assessed for mutations involved in ciprofloxacin resistance after sequencing.
Results: Nine isolates with MIC≥8 µg/ml had a mutation in gyrA (Thr83→Ile). Amongst these, seven isolates also had a mutation in parC (Ser87→ Leu or Trp) indicating that the prevalent mutation in gyrA is Thr83Ile and Ser87Leu/Trp in parC. No single parC mutation was observed.
Conclusion: It seems that mutations in gyrA are concomitant with mutations in parC which might lead to high-level ciprofloxacin resistance in P. aeruginosa isolates from patients with burn wounds and urinary tract infections.
References
Kollef MH, Micek ST. Strategies to prevent antimicrobial resistance in the intensive care unit. Crit Care Med 2005; 33(8): 1845-1853.
Bennett JV, Jarvis WR, Brachman PS. (2007) Bennett & Brachman's Hospital Infections, Lippincott Williams & Wilkins
Kuhlmann J, Dalhoff A, Zeiler, HJ ( 2012) Quinolone Antibacterials, Springer Science & Business Media.
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob 2015; 45(6): 568-585.
Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Update 2000; 3(4): 247-255.
Rahmani-Badi A, Abdi-Ali A, Falsafi T. Association of MexAB-OprM with intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides. Ann Microbiol 2007; 57(3): 425-429.
Aires JR, Köhler K, Nikaido H, Plésiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Ch 1999; 43(11): 2624-2628.
Jalal S, Ciofu O, Høiby N, Gotoh N , Wretlind B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Ch 2000; 44(3): 710-712.
Islam S, Jalal S , Wretlind B. Expression of the MexXY efflux pump in amikacin‐resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infec 2004; 10(10): 877-883.
Gorgani NS, Ahlbrand S, Patterson A, Pourmand N. Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Int J Antimicrob Ag 2009; 34(5): 414-418.
Lambert P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Roy Soc Med 2002; 95 (Suppl 41): 22
Mouneimné, H., J. Robert, V. Jarlier and E. Cambau (). Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Ch 1999; 43(1): 62-66.
Hooper DC. Mode of action of fluoroquinolones. Drugs 1999; 58(2): 6-10.
Kugelberg E, Löfmark S, Wretlind B, Andersson DI. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemoth 2005; 55(1): 22-30.
Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Micro Drug Resist 1998; 4(4): 257-261.
Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemoth 2006; 58(6): 1274-1278.
Ronald, AR and Low D (2012) Fluoroquinolone Antibiotics (Eds), Birkhäuser, Berlin.
Redgrave LS, Sutton SB, Webber MA and L. J. Piddock LJ Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology 2014; 22(8): 438-445. 19.
Moosdeen, F, Williams J, Secker A. Standardization of inoculum size for disc susceptibility testing: a preliminary report of a spectrophotometric method. J Antimicrob Chemoth 1988; 21(4): 439-443.
Goldman E, Green LH. (2015) Practical Handbook of Microbiology, CRC Press,.
Tsukatani T, Suenaga H, Shiga M, Noguchi K, Ishiyama M, Ezoe T, Matsumoto K. Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J Microbiol Meth 2012; 90(3): 160-166.
Bartlett, J. M. and D. Stirling (2003). PCR protocols, Springer.
Carter IW , Schuller M, James GS, Sloots, TP and Halliday CL (2010). PCR for Clinical Microbiology: An Australian and International Perspective, Springer Science & Business Media.
Tohidpour A, Najar Peerayeh S, Najafi S. Detection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of Pseudomonas aeruginosa. J Med Microbiol Infect Dis 2013; 1 (1):1-7
Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Lab Med 2010; 41(10): 609-612.
Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol 2016; 47(4):925-930.
Lu PL, Liu YC, Toh HS, Lee YL, Liu YM, Ho CM, Huang CC, Liu CE, Ko WC, Wang JH . Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009–2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int J Antimicrob Ag 2012; 40: S37-S43.
Karlowsky JA, Lagacé-Wiens PR, Simner PJ, DeCorby MR, Adam HJ, Walkty A, Hoban DJ, Zhanel GG. Antimicrobial resistance in urinary tract pathogens in Canada from 2007 to 2009: CANWARD surveillance study. Antimicrob Agents Ch 2011; AAC. 00066-00011.
Jones ME, Draghi DC, Thornsberry C, Karlowsky JA, Sahm DF, Wenzel RP. Emerging resistance among bacterial pathogens in the intensive care unit–a European and North American Surveillance study (2000–2002). Ann Clin Microbiol Antimicrob 2004; 3(1): 1.
Pasca MR, Dalla Valle C, De Jesus Lopes Ribeiro AL, Buroni S, Papaleo MC, Bazzini S, Udine C, Incandela ML, Daffara S, Fani R, Riccardi G, Marone P. Evaluation of fluoroquinolone resistance mechanisms in Pseudomonas aeruginosa multidrug resistance clinical isolates. Microb Drug Resist 2012; 18(1):23-32.
Wydmuch ZO, Skowronek-Ciolek K, Cholewa, Mazurek U, Pacha J, Kepa M, Idzik B, Wojtyczka RD gyrA mutations in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa in a Silesian Hospital in Poland." Pol J Microbiol 2005; 54(3): 201-206.
Aldred KJ, Kerns RJ, Osheroff N Mechanism of quinolone action and resistance. Biochemistry 2014; 53(10): 1565-1574.
Drlica KA, Mustaev TR, Towle G, Luan RJ, Kerns, Berger JM. Bypassing Fluoroquinolone Resistance with Quinazolinediones: Studies of Drug–Gyrase–DNA Complexes Having Implications for Drug Design. ACS Chemical Biology 2014; 9(12): 2895-2904.
Salma R, Dabboussi F, Kassaa I, Khudary R, Hamze M gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. J Antimicrob Chemoth 2013; 19(1): 77-81.
Higgins PA, Fluit A, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Ag 2003; 21(5): 409-413.
Files | ||
Issue | Vol 10 No 4 (2018) | |
Section | Original Article(s) | |
Keywords | ||
Pseudomonas aeruginosa Fluoroquinolones GyrA, ParC Ciprofloxacin resistance |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |