First detection of New Delhi metallo-β-lactamases variants (NDM-1, NDM-2) among Pseudomonas aeruginosa isolated from Iraqi hospitals
Abstract
Background and Objectives: Multidrug resistance and in particular, carbapenem resistant Gram-negative bacteria is spreading worldwide at an alarming rate. Among the clinically significant carbapenemases, the New Delhi Metallo-β-lactamase (NDM) is one of the most formidable. NDM efficiently hydrolyses β-lactams and is the last-resort among carbapenems. Hence, therapeutic options for NDM producer bacteria become restricted to a handful of antibiotics. The present study was undertaken to detect the prevalence of the blaNDM-variants Metallo β- lactamases (MBLs) among isolates of Pseudomonas aeruginosa recovered from various clinical samples of hospitalized patients in Baghdad, Iraq.
Materials and Methods: A total of 100 isolates of Gram-negative bacteria obtained from various clinical samples were subjected to antibiotic susceptibility testing by the disc-diffusion method against meropenem (10 µg), imipenem (10 µg), doripenem (10 µg), polymyxin B (10 µg), colistin (10 µg), amikacin (30 µg), gentamicin (10 µg), aztreonam (30 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), ofloxacin (5 µg), cefepime (30 µg), ceftazidime (30 µg), piperacillin-tazobactam (100\10 µg), tigecycline (15 µg) and tetracycline (10 µg). The results were interpreted according to the guidelines suggested by the Clinical Laboratory Standards Institute. Presence of blaNDM was detected by PCR and it was confirmed by DNA sequencing of the gene present in the isolates that exhibited carbapenem resistance.
Results: In the present study, four isolates of P. aeruginosa carried the blaNDM, three isolates harboured blaNDM-1 and one isolate harboured blaNDM-2. All isolates were resistant to imipenem and meropenem. The blaNDM-1 carrying isolates remained susceptible to colistin and β-lactamase inhibitors piperacillin-tazobactam.
Conclusion: We are reporting emergence of the P. aeruginosa carrying the blaNDM-variant, which exhibited resistance to imipenem and meropenem for the first time in Iraq.
Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother 2014;70:23-40.
Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 2007; 20:440-458.
Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011;55:3929-3931.
Leylabadlo HE, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol 2015;7:226-246.
Poirel L, Fortineau N, Nordmann P. International transfer of NDM-1-producing Klebsiella pneumoniae from Iraq to France. Antimicrob Agents Chemother 2011;55:1821-1822.
Alshara JMR, Alsehlawi ZSR, Aljameel DSA, Al-Zubbedy ZS, Almohana AM. First report of New Delhi metallo-beta-lactamase (NDM-1) producing Pseudomonas aeruginosa in Iraq. J Biol Agricul Healthc 2014;4:40-47.
CLSI. M100-S25 performance standards for antimicrobial. 2015. Clinical and laboratory standards institute 950 west valley road, suite 2500 Wayne, PA 19087 USA.
Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 2012; 50:3773-3776.
Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother 2008;61:548-553.
Islam MA, Nabi A, Rahman M, Islam M, Ahmed D, Faruque ASG, et al. Prevalence of faecal carriage of NDM-1-producing bacteria among patients with diarrhoea in Bangladesh. J Med Microbiol 2014;63(Pt 4):620-622.
Zhang X, Gu B, Mei Y, Wen Y, Xia W. Increasing resistance rate to carbapenem among blood culture isolates of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa in a university-affiliated hospital in China, 2004-2011. J Antibiot (Tokyo) 2015;68:115-120.
Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2012;18:432-438.
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from
India. Antimicrob Agents Chemother 2009;53:5046-5054.
Berger RE. Re: emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. J Urol 2011;185:154.
Rahman M, Prasad KN, Gupta S, Singh S, Singh A, Pathak A, et al. Prevalence and molecular characterization of new Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India. Microb Drug Resist 2017; doi: 10.1089/mdr.2017.0078.
Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother 2011; 66:1260-1262.
Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S, Seral C, et al. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014;304:405-414.
Files | ||
Issue | Vol 10 No 2 (2018) | |
Section | Original Article(s) | |
Keywords | ||
P. aeruginosa Carbapenem resistance blaNDM variants 1 2 |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |