Original Article

Eradication of methicillin resistant S. aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine

Abstract

Background and Objectives: Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). Fosfomycin is a borad-spectrum antibiotic with inhibitory effects on biofilm production and β-Chloro-L-alanine (β-CLA) is an amino acid analog. The aim of this study was to determine effect of the combination of fosfomycin and β-CLA on biofilm production by MRSA isolates. Also,the clonal relatedness of the isolates was evaluated.
Materials and Methods: To determine the ability of biofilm production by 42 MRSA isolates, microtiter plate method was used. Antibacterial activities of fosfomycin and β-CLA were investigated by determining MICs and MBCs. Antibiofilm activities were measured in the presence of sub-MIC concentrations of fosfomycin, β-CLA or a combination of both. RAPDPCR was used for investigating the clonal relationship between isolates by the two specific primers.
Results: 21.4% of isolates were strong and 5% were moderate biofilm producers. The effect of fosfomycin plus β-CLA treatment on biofilm production was significantly different from non-treated, fosfomycin and β-CLA groups (p=0.00, 0.004 and 0.000 respectively). RAPD-PCR analysis revealed that the RAPD1 primer had more discriminatory power. The Sizes of RAPD-PCR bands ranged from 150 bp to 1500 bp and the number of bands varied from 1 to 13.
Conclusion: Clonal relatedness of isolates showed that the majority of biofilm producing isolates had identical pattern and only three isolates showed more than 80% similarity. The combination of fosfomycin and β-CLA could be introduced as an excellent mixture for eradication of MRSA biofilms in vitro.

Tokajian S, New epidemiology of Staphylococcus aureus infections in the Middle East. Clin Microbiol Infect, 2014. 20(7): 624-8.

Rodvold K.A, McConeghy K.W. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin Infect Dis, 2014. 58 Suppl 1: S20-7.

Pozzi C., et al., Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog, 2012. 8(4): p. e1002626.

Chambers, H.F., The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis, 2001. 7(2): p. 178-82.

Gad, G.F., et al., Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries, 2009. 3(5): p. 342-51.

Gobernado, M., [Fosfomycin]. Rev Esp Quimioter, 2003. 16(1): p. 15-40.

Michalopoulos, A.S., I.G. Livaditis, and V. Gougoutas, The revival of fosfomycin. Int J Infect Dis, 2011. 15(11): p. e732-9.

Knothe, H., et al., Influence of fosfomycin on the intestinal and pharyngeal flora of man. Infection, 1991. 19(1): p. 18-20.

Mobashery, S. and M. Johnston, Inactivation of alanine racemase by beta-chloro-L-alanine released enzymatically from amino acid and peptide C10-esters of deacetylcephalothin. Biochemistry, 1987. 26(18): p. 5878-84.

Mihailescu, R., et al., High activity of Fosfomycin and Rifampin against methicillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother, 2014. 58(5): p. 2547-53.

Mikuniya, T., et al., Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama, 2005. 59(5): p. 209-16.

Ashcar, H., [Staphylococcus aureus--evaluation of tests for its identification. Differences in the biochemical action in human and animal strains]. Rev Fac Odontol Sao Paulo, 1969. 7(1): p. 5-39.

Farahani, A., et al., Comparison of different phenotypic and genotypic methods for the detection of methicillin-resistant Staphylococcus aureus. N Am J Med Sci, 2013. 5(11): p. 637-40.

de Cueto M, López L, Hernández JR, Morillo C, Pascual A. In vitro activity of fosfomycin against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob Agents Chemother. 2006 Jan;50(1):368-70.

O'Toole, G.A., Microtiter dish biofilm formation assay. J Vis Exp. 2011 Jan 30;(47). pii: 2437

Stepanovic, S., et al., Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007. 115(8): p. 891-9.

Hosseini Jazani N, Hadizadeh O, Farzaneh H, Moloudizargari M. Synergistic antibacterial effects of β-Chloro-L-alanine and phosphomycin on urinary tract isolates of E. coli, Biological Journal of Microorganism, 2013.1(4):1-6. 1

.18 Abdulamir AS, Jassim SA, Hafidh RR, Bakar FA. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob. 2015 Nov 11;14: 49.

.19 Kawamura H1, Nishi J, Imuta N, Tokuda K, Miyanohara H, Hashiguchi T, Zenmyo M, Yamamoto T, Ijiri K, Kawano Y, Komiya S. Quantitative analysis of biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) strains from patients with orthopaedic device-related infections. FEMS Immunol Med Microbiol. 2011; 63(1):10-5.

.20 Presterl, E., A. Lassnigg, B. Parschalk, F. Yassin, H. Adametz, and W. Graninger. 2005. Clinical behavior of implant infections due to Staphylococcus epidermidis. Int. J. Artif. Organs 28:1110-1118.

.21 Frossard, M., C. Joukhadar, B. M. Erovic, P. Dittrich, P. E. Mrass, M. Van Houte, H. Burgmann, A. Georgopoulos, and M. Muller. 2000. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob. Agents Chemother. 44:2728-2732.

.22 Joukhadar, C., N. Klein, P. Dittrich, M. Zeitlinger, A. Geppert, K. Skhirtladze, M. Frossard, G. Heinz, and M. Muller. 2003. Target site penetration of fosfomycin in critically ill patients. J. Antimicrob. Chemother. 51:1247-1252.

.23 Hajdu, S., A. Lassnigg, W. Graninger, A. M. Hirschl, and E. Presterl. 2009. Effects of vancomycin, daptomycin, fosfomycin, tigecycline and ceftriaxone on Staphylococcus epidermidis biofilms. J. Orthop. Res. 27:1361-1365.

.24 Presterl, E., S. Hajdu, A. M. Lassnigg, A. M. Hirschl, J. Holinka, and W. Graninger. 2009. Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 53:3205-3210.

.25 DiCicco M, Neethirajan S, Weese JS, Singh A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius. BMC Microbiol. 2014; 14: 129.

.26 El Zoeiby A, Sanschagrin F. Structure and function of the mur enzymes: development of novel inhibitors. Mol Microbiol. 2003; 47(1): 1-12.

.27 Sieradzki K, Tomasz A. Suppression of beta-lactam antibiotic resistance in a methicillin- resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J Antimicrob Chemother. 1997; 39 Suppl A:47-51.

Files
IssueVol 9 No 1 (2017) QRcode
SectionOriginal Article(s)
Keywords
MRSA Fosfomycin Phosphomycin β-chloro-L-alanine Biofilm RAPD-PCR

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Akbari-Ayezloy E, Hosseini-Jazani N, Yousefi S, Habibi N. Eradication of methicillin resistant S. aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine. Iran J Microbiol. 2017;9(1):1-10.