Detection of blaCTX-M15 and blaOXA-48 genes in Gram-negative isolates from neonatal sepsis in central of Iran

  • Taiebeh Shakiba Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Alireza Sadeghnia Department of Paediatrics, School of Medicine, Isfahan University of Medical Sciences, Imam Hossein Hospital, Isfahan, Iran
  • Vajihe Karbasizade Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Keywords: Neonatal sepsis, Drug resistance, blaCTX-M-15 gene, blaOXA-48 gene

Abstract

Background and Objectives: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the blaCTX-M-15 and blaOXA-48 genes in Gram-negative isolates.
Materials and Methods: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes.
Results: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of blaOXA-48 and blaCTX-M-15 genes was 25% and 50%, respectively.
Conclusion: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards.

References

1. Mandot S, Gandhi JS. Umbilical cord blood culture versus peripheral venous blood culture in early onset neonatal sepsis. Int J Contemp Pediatrics 2017;4:53-56.
2. Forouzandeh Z, Soltani Banavandi MJ, Kheyrkhah B. Molecular identification and evaluation of antibiotic resistance of coagulase negative Staphylococcus isolated from neonatal sepsis hospitalized at Gharazi Hospital in Sirjan, Kerman. J Shahrekord Univ Med Sci 2017;19: 117-125.
3. Le Doare K HP. An overview of global GBS epidemiology. Vaccine 2013;31 Suppl 4:D7-12.
4. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010;54:969-976.
5. Poirel L1 GM, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 2002;50:1031-1034.
6. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791-1798.
7. Poirel L HC, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:15-22.
8. Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology-E-Book: Elsevier Health Sciences; 2014.
9. Greisen K, Loeffelholz M, Purohit A, Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 1994;32:335-351.
10. Patel JB. Performance standards for antimicrobial susceptibility testing: Clinical and Laboratory Standards Institute; 2017.
11. Azimi L, Nordmann P, Lari AR, Bonnin RA. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg Infect Control 2014;9(1):Doc07.
12. Lee MY, Ko KS, Kang C-I, Chung DR, Peck KR, Song J-H. High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: diverse clones and clonal dissemination. Int J Antimicrob Agents 2011;38:160-163.
13. Ruppé E, Hem S, Lath S, Gautier V, Ariey F, Sarthou J. et al. CTX-M β-lactamases in Escherichia coli from community-acquired urinary tract infections, Cambodia. Emerg Infect Dis 2009;15:741-748.
14. Breurec S, Bouchiat C, Sire J-M, Moquet O, Bercion R, Cisse MF, et al. High third-generation cephalosporin resistant Enterobacteriaceae prevalence rate among neonatal infections in Dakar, Senegal. BMC Infect Dis 2016;16:587.
15. Roy S, Datta S, Das P, Gaind R, Pal T, Tapader R, et al. Insight into neonatal septicaemic Escherichia coli from India with respect to phylogroups, serotypes, virulence, extended-spectrum-β-lactamases and association of ST131 clonal group. Epidemiol Infect 2015;143:3266-3276.
16. Arhoune B, Oumokhtar B, Hmami F, Barguigua A, Timinouni M, El Fakir S, et al. Rectal carriage of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae among hospitalised neonates in a neonatal intensive care unit in Fez, Morocco. J Glob Antimicrob Resist 2017;8:90-96.
17. Chiotos K, Han JH, Tamma PD. Carbapenem-resistant Enterobacteriaceae infections in children. Curr Infect Dis Rep 2016;18:2.
18. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 2017;8:2276.
19. Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015;5:21.
20. Alan TF, Goudarzi H, Fallah F, Hashemi A, Doustdar F, Bostan H. Detection of blaNDM, blaDIM, blaIMP, blaVIM and blaCTX-M-15 beta-lactamase genes among Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from two hospitals of Tehran, Iran. Novelty in Biomedicine 2016;4:153-158.
21. Shantala G, Nagarathnamma T, Pooja D, Harsha T, Karthik R. Neonatal septicaemia caused by vancomycin resistant enterococcus faecium-a case report. J Clin Diagn Res 2014;8(11): DD03-DD04.
22. Mohsen L, Ramy N, Saied D, Akmal D, Salama N, Haleim MMA, et al. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrob Resist Infect Control 2017;6:63.
23. Behmadi H, Borji A, Taghavi-Rad A, Soghandi L, Behmadi R. Prevalence and antibiotic resistance of neonatal sepsis pathogens in Neyshabour, Iran. Arch Pediatr Infect Dis 2016;4(2):e33818.
24. Sarvamangala DJ, Venkatesh A, Shivananda P. Neonatal infections due to Pseudomonas maltophilia. Indian Pediatr 1984;21:72-74.
25. Viswanathan R, Singh AK, Ghosh C, Basu S. Stenotrophomonas maltophilia causing early onset neonatal sepsis. Indian Pediatr 2011;48:397-399.
26. Basany L, Aepala R. Early onset sepsis with pneumonia in a full term neonate due to Stenotrophomonas maltophilia. Int J Contemp Pediatr 2015;2:148-150.
27. Huang T-P, Somers EB, Wong ACL. Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J Bacteriol 2006;188:3116-3120.
28. Sharif MR, Hosseinian M, Moosavi GA, Sharif AR. Etiology of bacterial sepsis and bacterial drug resistance in hospitalized neonates of Shahid Beheshti Hospital of Kashan in 1375 and 1376. Feyz 2000;3:71-77.
29. Adib M, Bakhshiani Z, Navaei F, Fosoul FS, Fouladi S, Kazemzadeh H. Procalcitonin: a reliable marker for the diagnosis of neonatal sepsis. Iran J Basic Med Sci 2012;15:777-782.
30. Sayehmiri K, Nikpay S, Azami M, Pakzad I, Borji M. The prevalence of neonatal septicemia in Iran: a systematic review and meta-analysis study. J Shahrekord Univ Med Sci 2017;19: 158-169.
Published
2019-09-17
How to Cite
1.
Shakiba T, Sadeghnia A, Karbasizade V. Detection of blaCTX-M15 and blaOXA-48 genes in Gram-negative isolates from neonatal sepsis in central of Iran. Iran J Microbiol. 11(4):280-287.
Section
Original Article(s)