Distribution of extended-spectrum β-lactamases (ESBLs) among Salmonella serogroups isolated from pediatric patients

  • Reza Ranjbar Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Mehrdad Ardashiri Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Sakineh Samadi Department of Microbiology, Islamic Azad University, Damghan Branch, Damghan, Iran
  • Davoud Afshar Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
Keywords: Salmonella, Extended-spectrum beta-lactamases, Ciprofloxacin resistance

Abstract

Background and Objectives: Extended-spectrum β-lactamases (ESBLs) and fluoroquinolones are generally used to treat invasive Salmonella infections, but emergence of antibiotic-resistant strains are increasing worldwide. This study was aimed to investigate the distribution of ESBLs among Salmonella serogroups isolated from pediatric patients in Tehran, Iran. Materials and Methods: The study included all Salmonella isolates recovered from pediatric patients admitted to Children’s Medical Center, Tehran, Iran during 2015-2016. Bacterial isolation and identification were performed by standard biochemical and agglutination tests. Antimicrobial susceptibility testing was done according to the Clinical and Laboratory Standards Institute (CLSI). Polymerase chain reaction was used to identify the genetic determinants responsible for ESBL phenotypes. Results: A total of 138 S. enterica serovars were isolated from stool specimens, including serogroup A (1), serogroup B (18), serogroup C (41) and serogroup D (78). Forty isolates out of 138 Salmonella strains had shown ESBL-positive phenotype. All ESBL-positive isolates showed multiple resistant phenotype. Resistance to more than 3 antimicrobial agents was observed among ESBL-positive strains. The frequency of Salmonella strains carrying the blaCTX, blaTEM and blaSHV genes was 17 (12.3%), 40 (29.9%) and 4 (2.89%) respectively. Conclusion: The high rates of ESBLs positive-Salmonella strains recovered from pediatric patients is alarming and indicates a necessity to substitute the cephalosporins with a proper alternative.

References

Ranjbar R, Salimkhani E, Sadeghifard N, Yazdi J, Morovvati S, Jonaidi N, et al. An outbreak of gastroenteritis of unknown origin in Tehran, July 2003. Pakistan journal of biological sciences: PJBS. 2007;10(7):1138-40.

Ranjbar R, Naghoni A, Afshar D, Nikkhahi F, Mohammadi M. Rapid Molecular Approach for Simultaneous Detection of Salmonella spp., Shigella spp., and Vibrio cholera. Osong public health and research perspectives. 2016;7(6):373-7.

Ranjbar R, Ahmadi M, Memariani M. Multiple-locus variable-number tandem repeat analysis (MLVA) for genotyping of Salmonella enterica subspecies enterica serotype Infantis isolated from human sources. Microbial pathogenesis. 2016;100:299-304.

Naghoni A, Ranjbar R, Tabaraie B, Farshad S, Owlia P, Safiri Z, et al. High prevalence of integron-mediated resistance in clinical isolates of Salmonella enterica. Japanese journal of infectious diseases. 2010;63(6):417-21.

Bada-Alambedji R, Fofana A, Seydi M, Akakpo AJ. Antimicrobial resistance of Salmonella isolated from poultry carcasses in Dakar (Senegal). Brazilian Journal of Microbiology. 2006;37(4):510-5.

Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports. 2012;127(1):4-22.

Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food-and water-borne infections. FEMS microbiology reviews. 2002;26(2):141-8.

Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne pathogens and disease. 2011;8(8):887-900.

Ranjbar R, Giammanco GM, Farshad S, Owlia P, Aleo A, Mammina C. Serotypes, antibiotic resistance, and class 1 integrons in Salmonella isolates from pediatric cases of enteritis in Tehran, Iran. Foodborne pathogens and disease. 2011;8(4):547-53.

Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. Journal of Antimicrobial Chemotherapy. 2005;56(1):115-21.

Archambault M, Petrov P, Hendriksen RS, Asseva G, Bangtrakulnonth A, Hasman H, et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar Corvallis from Thailand, Bulgaria, and Denmark. Microbial Drug Resistance. 2006;12(3):192-8.

Hamidian M, Tajbakhsh M, Walther-Rasmussen J, Zali M-R. Emergence of extended-spectrum beta-lactamases in clinical isolates of Salmonella enterica in Tehran, Iran. Jpn J Infect Dis. 2009;62(5):368-71.

Jazayeri Moghadas A, Irajian G, Ranjbar R. Detection of extended spectrum beta lactamase producing Salmonella spp. and multidrug resistance pattern. Iranian Journal of Pathology. 2009;4(3):128-32.

Cho S-H, Han SY, Kang Y-H. Possibility of CTX-M-14 Gene transfer from Shigella sonnei to a commensal Escherichia coli strain of the gastroenteritis microbiome. Osong public health and research perspectives. 2014;5(3):156-60.

Sharma J, Sharma M, Ray P. Detection of TEM & SHV genes in Escherichia coli & Klebsiella pneumoniae isolates in a tertiary care hospital from India. 2010.

DiMarzio M, Shariat N, Kariyawasam S, Barrangou R, Dudley EG. Antibiotic resistance in Salmonella enterica serovar Typhimurium associates with CRISPR sequence type. Antimicrobial agents and chemotherapy. 2013;57(9):4282-9.

Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ. Emergence of Multidrug-Resistant Salmonella enterica SerotypeTyphimurium DT104 Infections in the United States. New England Journal of Medicine. 1998;338(19):1333-9.

Olsen SJ, Ying M, Davis MF, Deasy M, Holland B, Iampietro L, et al. Multidrug-resistant Salmonella Typhimurium infection from milk contaminated after pasteurization. Emerging infectious diseases. 2004;10(5):932.

Gupta A, Fontana J, Crowe C, Bolstorff B, Stout A, Duyne SV, et al. Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. The Journal of infectious diseases. 2003;188(11):1707-16.

Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, et al. Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerging infectious diseases. 2010;16(11):1754.

Rabatsky-Ehr T, Whichard J, Rossiter S, Holland B, Stamey K, Headrick ML, et al. Multidrug-resistant strains of Salmonella enterica Typhimurium, United States, 1997–1998. Emerging infectious diseases. 2004;10(5):795.

Varma JK, Mølbak K, Barrett TJ, Beebe JL, Jones TF, Rabatsky-Ehr T, et al. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations. Journal of Infectious Diseases. 2005;191(4):554-61.

Adhikari B, Besser T, Gay J, Fox L, Davis M, Cobbold R, et al. Introduction of new multidrug-resistant Salmonella enterica strains into commercial dairy herds. Journal of dairy science. 2009;92(9):4218-28.

Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. Journal of Bacteriology. 2001;183(19):5725-32.

Meunier D, Boyd D, Mulvey MR, Baucheron S, Mammina C, Nastasi A, et al. Island I in Serotype Paratyphi B. Emerging infectious diseases. 2002;8(4):431.

Lu Y, Zhao H, Sun J, Liu Y, Zhou X, Beier RC, et al. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China. PloS one. 2014;9(5):e96050.

Ranjbar R, Naghoni A, Yousefi S, Ahmadi A, Jonaidi N, Panahi Y. The study of genetic relationship among third generation cephalosporin-resistant Salmonella enterica strains by ERIC-PCR. The open microbiology journal. 2013;7:142.

Bhutta ZA. Current concepts in the diagnosis and treatment of typhoid fever. BMJ: British Medical Journal. 2006;333(7558):78.

Rotimi VO, Jamal W, Pal T, Sovenned A, Albert MJ. Emergence of CTX-M-15 type extended-spectrum β-lactamase-producing Salmonella spp. in Kuwait and the United Arab Emirates. Journal of medical microbiology. 2008;57(7):881-6.

Yu F, Chen Q, Yu X, Li Q, Ding B, Yang L, et al. High prevalence of extended-spectrum beta lactamases among Salmonella enterica Typhimurium isolates from pediatric patients with diarrhea in China. PLoS One. 2011;6(3):e16801.

Cui S, Li J, Sun Z, Hu C, Jin S, Guo Y, et al. Ciprofloxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerging infectious diseases. 2008;14(3):493.

Galanis E, Wong DMLF, Patrick ME, Binsztein N, Cieslik A, Chalermchaikit T, et al. Web-based surveillance and global Salmonella distribution, 2000–2002. Emerging infectious diseases. 2006;12(3):381.

Khanal B, Sharma SK, Bhattacharya SK, Bhattarai NR, Deb M, Kanungo R. Antimicrobial susceptibility patterns of Salmonella enterica serotype typhi in eastern Nepal. Journal of Health, Population and Nutrition. 2007:82-7.

Published
2018-11-23
How to Cite
1.
Ranjbar R, Ardashiri M, Samadi S, Afshar D. Distribution of extended-spectrum β-lactamases (ESBLs) among Salmonella serogroups isolated from pediatric patients. Iran J Microbiol. 10(5):294-299.
Section
Original Article(s)