

Volume 17 Number 5 (October 2025) 734-740 DOI: http://doi.org/10.18502/ijm.v17i5.19882

Phenotypic and genotypic analysis of hypermucoviscous Klebsiella pneumoniae (hmkp) strain

Hayder Ali¹, Dhuha Mahdi Jabir^{1*}, Zainab Falih¹, Salam Najm²

¹Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq ²Department Diwaniyah Health, Ministry of Health, Al Diwaniyah, Iraq

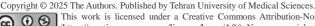
Received: May 2025, Accepted: July 2025

ABSTRACT

Background and Objectives: Hypermucoviscous Klebsiella pneumoniae exhibits distinct phenotypic and genetic characteristics that distinguish it from the classic K. pneumoniae pathogen. The aim of current study was to investigate some phenotypic and genetic markers used for hmKp identification.

Materials and Methods: Seventy-one K. pneumoniae isolates were obtained from the respiratory care unit in Al-Diwanyiah Teaching Hospital \Diwanyah, Iraq, from the first of November 2024 to the first of March 2025. The bacteria were identified, and antibiotic sensitivity testing was performed using VITEK 2 ID-GN and AST cards. Hypermucoviscosity was assessed using the string test, and an investigation into several adherence and virulence genes was conducted for all isolates. Then, multi-locus sequence typing was performed for hypermucoviscous K. pneumoniae isolates.

Results: 3 (4.22%) of 71 isolates were hypermucoviscous. The virulence and adherence genes were present in 100% of the isolates, whereas rmpA was only found in hypermucoviscous isolates. The results showed that the hmKp isolates were members of clonal group 147 (CG147) and were assigned to sequence type (ST) 293.


Conclusion: The string test is the primary phenotypical diagnosis for hmKp, while the genetically encoded rmpA gene is the most reliable genetic marker for hmKp identification. However, MLST is not beneficial for identification. The central positioning of ST392 within the MST highlights its potential role as an emerging high-risk clone.

Keywords: Klebsiella pneumonia; Hypermucoviscosity; Bacterial capsules; rmpA gene; Virulence

INTRODUCTION

Klebsiella pneumoniae is the most commonly isolated microorganism from both community and hospital-acquired infectious diseases (1). It's a member of the Enterobacteriaceae that causes bloodstream infection, pneumonia, and urinary tract infection (2). More recently, however, a new hypermucoviscous K. pneumoniae (hmKp) strain has been primarily found in Southeast Asia (3). hmKp strains are characterized by a gelatinous morphology on solid media, and this can be identified as a positive 'string test' semi-quantitatively (4). Such strains might cause numerous serious infections, including liver abscess, endophthalmitis, meningitis, and metastasize to infect multiple organs (5). Infection with hmKp may result in lethal community-acquired infections in immunocompetent individuals (6). However, recent research has revealed renal insufficiency and hospital-acquired infection as predisposing factors for the infection (7). Furthermore, nosocomial transmission and healthcare-associated infections (HAI) outbreaks have increased recently (8). It has been well-established for a long time that hypermucoviscosity is strongly

*Corresponding author: Dhuha Mahdi Jabir, Ph.D, Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Tel: +96-47818383125 Email: dhuha.mahdijabir@qu.edu.iq

correlated with hypervirulence in hmKp strains (9).

Hypermucoviscous (hmKp) and hypervirulent have thus typically been synonymous (10). However, recent studies have highlighted that there are many fundamental differences between hypermucoviscosity and hypervirulence (11). K. pneumoniae hypervirulence is a product of multiple factors. Hypervirulence cannot be conferred by a single phenotypic attribute or genetic variable (12). It is insufficient to declare one strain hypervirulent solely based on hypermucoviscosity ascertained by the string test (13). Additionally, earlier studies have shown that several virulence variables, besides the hypermucoviscous phenotype (14), such as the type III fimbrial adhesin gene (mrkD), the regulator mucoid phenotype A (rmpA), and the carbapenem gene (bla_{KPC}), play a crucial role in antibiotic resistance, especially in association with the mrkD gene (15). The primary objective of the current study was to identify several phenotypic and genetic markers used for hmKp identification.

MATERIALS AND METHODS

Samples. Seventy-one *K. pneumoniae* isolates were obtained from patients admitted to the Respiratory Care Unit (RCU) at Al-Diwanyah Teaching Hospital. Isolates were identified using VITEK 2 ID-GN cards (BioMérieux, France). Susceptibility to antibiotics was determined using VITEK 2 AST-GN cards, performed according to the standard CLSI methodology (Institute, 2024).

The string test was used to identify hmKp phenotypically; positive strains are defined as those with a sticky string formed by bacterial colonies after being stretched on an agar plate (16).

Testing the ability to form biofilm. A microtiter plate method was used to assess bacterial biofilm formation. First, a Luria broth culture of bacteria was added to each well, along with 200 μ L of trypticase soy broth (TSB), then the mixture was incubated for 18 hours at 37°C. The wells were then filled with 10 μ L of a 24-hour microbial suspension adjusted to 0.5 McFarland turbidity standard. After that, the plates were incubated for 24 hours at 37°C. Subsequently, every well was drained and given three saline washes. Each well was then filled with 200 μ L of a 10% crystal violet solution, which was then allowed to sit

at room temperature for 20 minutes. After that, the wells were cleaned and dried three times using normal saline. Following the addition of 200 μ L of dimethyl sulfoxide (DMSO) to each well, the plate's optical density (OD) was measured at 630 nm using an ELISA reader. To quantify biofilm formation, the test OD was compared to a control OD: strong biofilm: OD >0.65, moderate biofilm formation: 0.3<OD \leq 0.5, weak biofilm: OD \leq 0.3, while OD \leq 0.15 indicated no biofilm formation (17).

Identification of metallo-β-lactamase-producing isolates phenotypically. Imipenem alone and imipenem mixed with boronic acid were used to detect class A beta-lactamase (metallo-β-lactamase-producing) isolates such as KPC-positive bacteria, using the combination disk test (CDT). Boronic acid (10 μL) was applied to an imipenem disk. The diffusion method was used, with bacteria streaked on Mueller-Hinton agar. The plates were incubated for 24 hours at 37° C. A carbapenemase-positive isolate was identified by an inhibitory zone of at least 5 mm around the imipenem-β-lactamase inhibitor disc, which was also larger than the zone around the imipenem disc alone (18).

Molecular methods. The PCR detection kits used in this study included the Presto[™] Mini gDNA Bacteria Kit, manufactured by Geneaid (Taiwan), and the GoTaq® Green PCR Master Mix, manufactured by Promega (USA).

Virulence and adhesion genes detection. PCR was used to detect carbapenem resistance genes. A particular primer, PCR products, and PCR conditions for detecting carbapenem-resistant genes (*rmpA*, *mrkD*, *bla*_{KPC}, and *bla*_{VIM}) are provided in Table 1. The thermocycler conditions were (95°C, 30 sec, 58°C, 30 sec, 72°C, 60 sec for 30 cycles). The products were analyzed on a 1% agarose gel stained with 1X Tris-Acetate-EDTA buffer. Safe Stain was used to stain the gels, and UV light was used to view the PCR products.

Multi-locus sequence typing of hypermucoviscus isolates. The characterization of *K. pneumoniae* clinical isolates was performed, and their clonal group (CG) was identified using the Multi-locus Sequence Typing (MLST) technique. The Protocol used followed the original conditions described by

(Diancourt et al., 2005) (19). MLST is considered a suitable technique for describing the genetic relationships between bacterial isolates because it offers precise and portable data that makes multiuser multinational databases possible. The seven housekeeping genes used in this technique are described in Table 2.

PCR amplification conditions. The initial denaturation was at 94°C for 2 minutes. Denaturation during the cycles was at 94°C for 20 seconds. The annealing temperature was 50°C for all genes, except for *gapA*, which was 60°C, and *tonB*, which was 45°C. The extension temperature was 72°C for 30 seconds. The final extension was at 72°C for 5 minutes. PCR involved 35 cycles of amplification. For *tonB*, MgCl₂ must be used at a concentration of 50 mM, while for all other genes, 25 mM 1-MgCl₂ is required

RESULTS

This descriptive study analyzed respiratory samples from patients infected with *Klebsiella pneumoniae*

Table 1. The PCR oligonucleotides used used for molecular detection

Oligo.	Primers Sequence (5'-3')	NCBI Code reference
rmpA	F: ACTGGGCTACCTCTGCTCA	KJ469368.1
	R: TCAGTAGGCATTGCAGCCT	
mrkD	F: GGAACCCACATCGACATTCA	MZ380316.1
	R: CAACGGTGATGCTGGACATG	
$bla_{_{\mathrm{KPC}}}$	F: CTGTAAGTTACCGCGCTGAG	NC_014312.1
	R: CAGGTTCCGGTTTTGTCTCC	
$bla_{\scriptscriptstyle { m VIM}}$	F: AAGTCCGTTAGCCCATTCCG	CP034084.1
	R: ACTCATGAACGGCACAACCA	

who were admitted to the hospital's respiratory care unit. Bacterial isolates were identified, and their antibiotic susceptibility was assessed using the VITEK 2 system with ID-GN and AST cards. Based on the string test, 3 out of 71 isolates (4.22%) exhibited a hypermucoid phenotype.

The antimicrobial sensitivity results showed that all 71 isolates (100%) of *K. pneumoniae* were multidrug-resistant (MDR). As described in Fig. 1, resistance rates varied significantly across different antibiotic categories. A Chi-square test was conducted to evaluate the response of bacteria to antibiotics, with results categorized by the type of antimicrobial agent (sensitive, intermediate, or resistant).

A statistically significant correlation was found by the test ($\chi^2=354.6$, df = 48, P < 0.001), suggesting that resistance patterns varied depending on the antibiotic class. The prevalence of hypermucoviscous isolates was 4.22% (3 out of 71; 95% CI: 0.9%-11.7%). The majority of isolates (55/71, 77%) demonstrated the ability to form a strong biofilm, with an average optical density (OD) of 6.3 \pm 0.42, while 13 isolates (18.3%) exhibited weak biofilm formation (OD = 0.3 \pm 0.11). The three hmKp isolates demonstrated moderate biofilm-forming ability with an average OD = 0.49 \pm 0.06.t.

MICs for the three hmKp isolates are described in Table 3

The results of biofilm formation showed that 55 (77%) of 71 isolates formed a strong biofilm (OD = 6.3), and 13 (18.30%) of 71 isolates formed a weak biofilm (OD = 0.3). The three hmKp isolates had an OD of 0.49, defined as moderate biofilm formers (Fig. 2).

To complete the phenotypical identification of metallo- β -lactamase-producing isolates (CDT), as mentioned above, the results indicated that the combination of boronic acid and imipenem increased

Table 2. Housekeeping genes used in MLST of K. pneumoniae

Gene	Forward Primer	Reverse Primer	
rpoB	GGCGAAATGGCGAGAACA	GAGTCTTCGAAGTTGTAACC	
gapA	TGAAATATGACTCCACTCACGG	CTTCAGAAGCGGCTTTGATGGCTT	
Mdh	CCCAATCTCGCTTCAGGTCAG	CCGTTTTTCCCCACAGCAG	
Pgi	GAGAAAACCTGCCTGTCTGCTGGC	CGCGCCACGCTTTATAGCGTTAAT	
phoE	ACCTACCGCAACACCGACTTCTTCGG	TGATCAGAACTGGTAGTGAT	
infB	CTCGCTGCTGGCTATATTCG	CGCTTTCAGCTCAAGACTTC	
tonB	CTTTATACCTCGGTAATCAGGTT	ATTCGCCGGCTGRGCRGGAG	

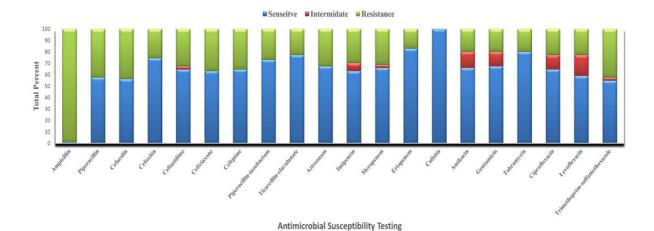
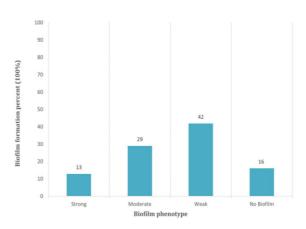



Fig. 1. Antibiotic resistance pattern in *Klebsiella pneumoniae* isolates

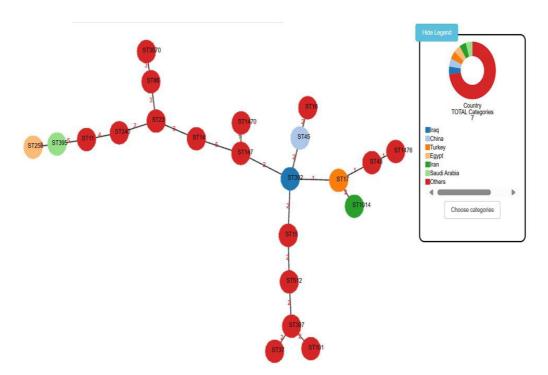
Table 3. Minimal inhibitory concentrations (MIC a; mg/L) of three hmKp isolates

Antibiotic	K. pneumoniae clinical isolates		
	1	2	3
Aminoglycosides			
Amikacen	S < 2.0	S < 1.0	S < 2.0
Gentamicin	S < 1.0	S < 1.0	S < 1.0
Tobramycin	S < 2.0	S < 1.0	S < 1.0
β-lactamases			
Ticarcillin/Clavulanic Acid	S 16.0	R 32.0	R 32.0
Cefepim	R > 64.0	R 8.0	R 64.0
Cefotaxime	R 8.0	R 64.0	R 64.0
Ceftazidim	I 8.0	R > 64.0	R 64.0
Cefazolin	R 64.0	R 64.0	R 8.0
Ertapenim	S < 0.5	R 8.0	R 8.0
Imipenem	R 8.0	R 16.0	R 8.0
Meropenem	R 8.0	R 8.0	R 16.0
Piperacilln/ Tazobactam	S < 4.0	R >128.0	R >32.0
Fluoroquinolons			
Ciprofloxacin	R > 4.0	R > 4.0	R > 4.0
Levofloxacin	R > 4.0	R > 4.0	S < 0.25
Lipopeptides			
Colistin	S 0.5	S 1.0	S 0.5
Folate Pathway Antagonists Trimthoprim/	R >320.0	R >320.0	R >320.0
Sulfamethoxazol			

a: Level of resistance according to (Institute, 2024) guidelines: R, resistant; I, intermediate; S, sensitive

Fig. 2. The results of the ability to form biofilm among different *K. pneumoniae* isolates

the inhibition zone only in hmKp isolates, while this combination did not affect non-hypermucoviscous *K. pneumoniae* isolates.


The study also included an investigation of virulence and adhesion genes. The results showed that all investigated genes, except the *rmpA* gene, were present at 100%. In contrast, the *rmpA* gene was isolated from the hmKp isolates only.

A genetically based MLST test was conducted for the genotypic analysis of 3 isolates in the field of study, and the results showed that all the isolates belonged to Clonal Group 147 (CG147) and Sequence Type 392 (ST392). (https://bigsdb.pasteur.fr/). The MST diagrams generated from MLST data, categorized by country, source, year, and ST groupings, revealed that ST392, isolated from Iraq in 2025 from a sputum sample, is first recorded in Iraq, and it occupies a central position within a diverse clonal network.

ST392 showed close phylogenetic proximity to high risk clones such as ST15, ST147, and ST307, which are widely recognized for their association with multidrug resistance (MDR) and virulence (Fig. 3).

DISCUSSION

K. pneumoniae is characterized by having many virulence factors, including hypermucoviscosity, one of which is related to capsular formation. Several studies have attributed capsular K1\K2 serotypes and the genes associated with capsule formation. In clinical settings, the development of carbapenem resistance (CR) and hypervirulence (hv) as separate evolutionary pathways for K. pneumoniae poses a serious risk. Nonetheless, there has been an increasing recognition in recent years of several strains of K. pneumoniae that combine the two characteristics, leading to serious clinical consequences. Carbapenem-resistant hypervirulent K. pneumoniae (CRhvKP) usually arises when carbapenem-resistant or hypervirulent K. pneumoniae acquire plasmids containing either virulence or CR-encoded genes. A thorough definition of hvKp includes the hypermucoviscous phenotype, the genotype of the associated virulence gene, and the clinical signs of metastatic infection (20). However, the string test is still the optimal phenotypic test for detecting the hypermucoviscous property of K. pneumoniae; it can't be considered the gold standard test for hmKp identification, as it is often described as lacking accuracy and rigidity (21). Therefore, it's important to investigate some genes associated with hypermucoviscous strains. Regarding the antibiotic resistance results, all isolates including the hmKp isolates were MDR. This contradicts the previous belief that highly viscous isolates are often susceptible to antibiotics or do not possess the trait of multi-resistance (22). This is consistent with the possibility that these isolates may become invasive and hypervirulent strains. Analysis of the clinical isolates revealed that K. pneumoniae was highly resistant to beta-lactamase enzymes in different patients. These isolates have greater than 99.9% identity. Differences were observed between the strains regarding resistance behavior to levofloxacin and ticarcillin/clavulanic acid (Table 3). Gene sequences corresponding to virulence factors, such as the mrkD and rmpA villus type 3 genes, were found in hmKp isolates. Similarly, resistance genes, such as $bla_{_{\mathrm{KPC-3}}}$, but not $bla_{_{\mathrm{VIM}}}$ were found as well. Biofilm

Fig. 3. Minimum Spanning Tree (MST) colored by Country.

The phylogenetic relationships of ST392 and related STs based on geographical origin

production was quantified, and it was observed that all three isolates were moderate biofilm producers. Our results consistently agree with several current studies that had investigated the ability of classical K. pneumoniae to be higher than that of hmKp (23). Physically, studies indicate that the formation of the highly viscous capsule hinders contact between cells and biofilm formation. However, hmKp strains often exhibit downregulated expression of type III fimbriae, which is essential for biofilm formation (24). Transcription levels of genes associated with antibiotic resistance ($bla_{\rm KPC}$ and $bla_{\rm VIM}$), high viscosity, biofilm formation, and adherence (mrkA and pgaA) were evaluated as described in previous studies (22). The results revealed a significant increase in transcript levels of the mrkD, rmpA, and blaKPC genes, indicating that the associated proteins' expression may contribute to enhanced antibiotic resistance. However, the $bla_{_{\mathrm{VIM}}}$ genes tested appeared to be absent in hmKp isolates. We recently identified three clinical isolates of K. pneumoniae ST392 that produce the KPC-3 protein, which is associated with respiratory tract infections found in ST392 clinical isolates. In all visualizations: ST392 (Iraq) clustered near ST15 (blood, China), ST147 (CSF, Saudi Arabia), and ST307 (wound, Turkey). The allelic differences between ST392 and neighboring STs ranged from 1 to 2 loci, indicating strong evolutionary relatedness. The diversity of countries and sources underscores the global nature of high-risk clones, suggesting possible international transmission routes or shared evolutionary pressures. Clonal group CG147, which includes ST147 and ST392, has been identified as a major contributor to hospital outbreaks due to its carriage of critical resistance genes, such as $bla_{_{\rm NDM-5}}$, $bla_{_{\rm OXA-181}}$, and occasionally $bla_{_{\rm KPC}}$ (16). The presence of capsular locus KL64 in both ST147 and ST392 further supports the hypothesis of a common evolutionary lineage (25). The close relationship between ST392 and ST15 is particularly concerning, as ST15 is a globally disseminated MDR clone frequently linked to resistance determinants such as CTX-M-15 and carbapenemases. Importantly, the ST392 isolate analyzed in this study harbors key resistance and virulence genes, including bla_{kpc}, rmpA, and mrkD. bla_{KPC} Encodes K. pneumoniae carbapenemase, conferring resistance to carbapenems, a last-resort antibiotic. rmpA: Regulates hypermucoviscosity, enhancing virulence by promoting capsule production and resistance to phagocytosis. mrkD:

Encodes adhesins involved in biofilm formation, facilitating persistence on medical devices and host tissues. This genetic profile mirrors patterns observed in other high-risk clones, suggesting convergent evolution driven by selective pressures in healthcare settings. The phylogenetic clustering observed in this study aligns with previous genomic analyses, reinforcing the role of horizontal gene transfer, mobile genetic elements, and antibiotic pressure in shaping the evolution of these clones.

CONCLUSION

The string test is the primary phenotypical diagnosis for hmKp, while the *rmpA* gene is the most significant genetic marker for hmKp identification. However, the central positioning of ST392 within the MST highlights its potential role as an emerging high-risk clone. Continuous genomic surveillance and detailed characterization of ST392 isolates are crucial for monitoring the spread of resistance and virulence factors. Integrating MLST-based phylogenetics with metadata (e.g., geographical origin, source, year, and genetic markers) provides a valuable understanding of the epidemiology of *K. pneumoniae* and supports proactive infection control measures.

REFERENCES

- Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent *Klebsiella pneumoniae*. *Front Microbiol* 2021; 12: 642484.
- Namikawa H, Yamada K, Sakiyama A, Imoto W, Yamairi K, Shibata W, et al. Clinical characteristics of bacteremia caused by hypermucoviscous *Klebsiella pneumoniae* at a tertiary hospital. *Diagn Microbiol Infect Dis* 2019; 95: 84-88.
- 3. Fauvet T, Tarantola A, Colot J, Merlet A, Goarant C, Marot B, et al. Mucoviscous characteristics of *Klebsiella pneumoniae* strains: A factor of clinical severity? *Med Mal Infect* 2020; 50: 500-506.
- Cubero M, Grau I, Tubau F, Pallarés R, Dominguez MA, Liñares J, et al. Hypervirulent *Klebsiella pneu-moniae* clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013). *Clin Microbiol Infect* 2016; 22: 154-160.
- Tan TY, Ong M, Cheng Y, Ng LSY. Hypermucoviscosity, rmpA, and aerobactin are associated with community-acquired Klebsiella pneumoniae bacteremic

- isolates causing liver abscess in Singapore. *J Microbiol Immunol Infect* 2019; 52: 30-34.
- Fung C-P, Chang F-Y, Lin J-C, Ho DM-T, Chen C-T, Chen J-H, et al. Immune response and pathophysiological features of *Klebsiella pneumoniae* liver abscesses in an animal model. *Lab Invest* 2011; 91: 1029-1039.
- Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol 2021; 11: 738223.
- Hu Y-L, Bi S-L, Zhang Z-Y, Kong N-Q. Correlation between antibiotic resistance, virulence genes, and genotypes among *Klebsiella pneumoniae* clinical strains isolated in Guangzhou, China. *Curr Microbiol* 2024; 81: 289.
- Li N, Wang L, Wang F, Chen H, Tao S, Zhu Q, et al. Rapid detection of *Klebsiella pneumoniae* carrying virulence gene *rmpA2* by Recombinase polymerase Amplification Combined with Lateral flow strips. *Front Cell Infect Microbiol* 2022; 12: 877649.
- Morreale DP, St Geme Iii JW, Planet PJ. Phylogenomic analysis of the understudied Neisseriaceae species reveals a poly-and paraphyletic Kingella genus. *Microbiol Spectr* 2023; 11(6): e0312323.
- 11. Makhrmash JH, Al-Aidy SR, Qaddoori BH. Investigation of biofilm virulence gene prevalence in *Klebsiella pneumoniae* isolated from urinary tract infections. *Arch Razi Inst* 2022; 77: 1421-1427.
- Rakotondrasoa A, Passet V, Herindrainy P, Garin B, Kermorvant-Duchemin E, Delarocque-Astagneau E, et al. Characterization of *Klebsiella pneumoniae* isolates from a mother-child cohort in Madagascar. *J Antimicrob Chemother* 2020; 75: 1736-1746.
- Vuotto C, Longo F, Pascolini C, Donelli G, Balice M, Libori M, et al. Biofilm formation and antibiotic resistance in *Klebsiella pneumoniae* urinary strains. *J Appl Microbiol* 2017; 123: 1003-1018.
- Lee H-C, Chuang Y-C, Yu W-L, Lee N-Y, Chang C-M, Ko N-Y, et al. Clinical implications of hypermucoviscosity phenotype in *Klebsiella pneumoniae* isolates: association with invasive syndrome in patients with community-acquired bacteremia. *J Intern Med* 2006; 259: 606-614.
- Bakhtiari R, Javadi A, Aminzadeh M, Molaee-Aghaee E, Shaffaghat Z. Association between presence of RmpA, MrkA, and MrkD genes and antibiotic resistance in clinical Klebsiella pneumoniae isolates from

- hospitals in Tehran, Iran. *Iran J Public Health* 2021; 50: 1009-1016.
- 16. Gupta V, Garg R, Kumaraswamy K, Datta P, Mohi GK, Chander J. Phenotypic and genotypic characterization of carbapenem resistance mechanisms in *Klebsiella pneumoniae* from blood culture specimens: A study from North India. *J Lab Physicians* 2018; 10: 125-129.
- Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of *Klebsiella pneumo-niae* nosocomial isolates. *J Clin Microbiol* 2005; 43: 4178-4182.
- Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary *Klebsiella* spp. Phenotypes? *Virulence* 2017; 8: 1111-1123.
- 19. Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, et al. Acquisition of regulator on virulence plasmid of hypervirulent *Klebsiella* allows bacterial lifestyle switch in response to iron. *mBio* 2023; 14(4): e0129723.
- Anchez-López J, García-Caballero A, Navarro-San Francisco C, Quereda C, Ruiz-Garbajosa P, Navas E, et al. Hypermucoviscous *Klebsiella pneumoniae*: A challenge in community-acquired infection. *IDCases* 2019; 17: e00547.
- 21. Mahdi Jabir D. Bacterial Infections associated with COVID-19 and the effect of using many common antibiotics in the treatment of these infections. *Iran J Med Microbiol* 2022; 16: 363-367.
- 22. Thapa TB, Maharjan S, Giri N, Sapkota M, Shrestha O, Khanal PR, et al. Incidence of hypermucoviscous *Klebsiella pneumoniae* and phenotypic detection of its virulence factors, along with classical strains, among patients visiting a tertiary care hospital. *J Infect Dev Ctries* 2025; 19: 258-266.
- 23. D'Apolito D, Arena F, Conte V, De Angelis LH, Di Mento G, Carreca AP, et al. Phenotypical and molecular assessment of the virulence potential of KPC-3-producing *Klebsiella pneumoniae* ST392 clinical isolates. *Microbiol Res* 2020; 240: 126551.
- 24. Chew KL, Octavia S, Lai D, Lin RTP, Teo JWP. Genomic Characterization of *Klebsiella quasipneumoniae* from clinical specimens in singapore. *Antimicrob Agents Chemother* 2021; 65(8): e0041221.
- Rodrigues C, Desai S, Passet V, Gajjar D, Brisse S. Genomic evolution of the globally disseminated multidrug-resistant *Klebsiella pneumoniae* clonal group 147. *Microb Genom* 2022; 8: 000737.