

Volume 17 Number 5 (October 2025) 848-853 DOI: http://doi.org/10.18502/ijm.v17i5.19894

Investigation of the antifungal activity of panobinostat, tamoxifen, and miltefosine alone and in combination with some conventional antifungal drugs against fluconazole-resistant Candida species

Fatemeh Amirzadeh-Ghasemi¹, Roshanak Daie Ghazvini^{1*}, Sadegh Khodavaisy¹, Seyed Jamal Hashemi¹, Ali Ahmadi², Pegah Ardi¹, Mahdi Abastabar³, Davoud Roostaei⁴, Zahra Rafat⁵

¹Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

²Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

³Department of Medical Mycology and Parasitology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

⁴Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran ⁵Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Received: Februrary 2025, Accepted: May 2025

ABSTRACT

Background and Objectives: The increasing incidence of antifungal-resistant Candida infections, particularly among cancer patients, emphasizes the urgency of exploring alternative therapeutic strategies. This study aimed to assess the in vitro antifungal efficacy of three anticancer agents—tamoxifen, panobinostat, and miltefosine—both individually and in combination with the antifungals fluconazole and itraconazole, against fluconazole-resistant Candida strains.

Materials and Methods: A total of 21 clinical Candida isolates (C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, and C. auris) were evaluated. Antifungal susceptibility testing was conducted following the microdilution protocol outlined by

Results: The combination of panobinostat with fluconazole exhibited full synergistic activity against C. albicans and C. tropicalis. Conversely, antagonistic effects were observed with C. parapsilosis and C. glabrata, while C. auris displayed an indifferent response. Panobinostat paired with itraconazole showed synergy exclusively against C. albicans. Similarly, miltefosine combined with itraconazole demonstrated synergism with C. albicans, but no interaction was found with fluconazole. Tamoxifen in conjunction with itraconazole revealed a synergistic response against C. albicans, antagonism with C. tropicalis, and indifference with other species.

Conclusion: Certain combinations of antifungals and anticancer agents could potentiate antifungal activity against resistant Candida isolates. Therefore, precise species-level identification is vital for tailoring effective combination therapies, particularly in immunocompromised individuals.

Keywords: Panobinostat; Tamoxifen; Miltefosine; Fluconazole; Itraconazole; Candida

*Corresponding author: Roshanak Daie Ghazvini, Ph.D, Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-2142933141 Fax: +98-2188951392 Email: rdaie@tums.ac.ir

Copyright © 2025 The Authors. Published by Tehran University of Medical Sciences.

INTRODUCTION

Over recent years, the frequency of candidiasis has risen markedly, primarily due to the increasing population of immunocompromised individuals. Although *Candida albicans* remains the leading causative species, non-albicans Candida—including C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei—are being reported with growing regularity as significant pathogens (1, 2).

Currently, the main antifungal agents available for candidiasis treatment fall into three categories: polyenes, azoles, and echinocandins. However, amphotericin B, a widely used polyene, is associated with considerable toxicity, restricting its broader application (3). Compounding the problem, resistance to azoles and echinocandins is becoming increasingly common, particularly among certain non-albicans species that exhibit intrinsic resistance to azoles (4).

The identification of *Candida auris*—a recently emerged species notable for its resistance to multiple antifungal classes—has further intensified therapeutic concerns on a global scale (5). These issues highlight the need to explore new antifungal strategies, including drug repurposing and combination therapies that may enhance efficacy while mitigating resistance development.

Nevertheless, not all drug combinations are beneficial. Some, such as azoles combined with polyenes, may result in antagonistic interactions (6). Consequently, recent studies have investigated the synergistic potential of combining fluconazole with non-antifungal compounds (7, 8). Among such compounds are tamoxifen (9), panobinostat (10), and miltefosine (11), which are frequently administered to cancer patients and have shown promise in enhancing antifungal effects when used in combination.

Considering that cancer patients are particularly vulnerable to fungal infections due to their immunosuppressed status, this study aims to evaluate the in vitro interactions of tamoxifen, panobinostat, and miltefosine with azole antifungals—fluconazole and itraconazole—against fluconazole-resistant clinical isolates of *C. albicans, C. glabrata, C. parapsilosis, C. tropicalis,* and *C. auris.* Given the limited existing data on such combinations, the findings may inform future research and clinical strategies for managing invasive candidiasis in immunocompromised populations.

MATERIALS AND METHODS

Microorganisms. In this study, fluconazole-resistant Candida species were isolated from clinical specimens collected from patients diagnosed with candidiasis. The samples included blood cultures, biopsy tissues, and bronchoalveolar lavage fluids. All isolates originated from the biobank of the Tehran Medical Mycology Laboratory (TMML), Tehran, Iran. The isolates represented several Candida species: C. parapsilosis (n=6), C. albicans (n=5), C. glabrata (n=5), C. tropicalis (n=4), and C. auris (n=1). Species identification had been previously performed using a multiplex 21-plex PCR assay and internal transcribed spacer (ITS) region sequencing (12). Due to the clinical relevance of fluconazole resistance, only isolates resistant to this azole antifungal were included in the experiments.

Antifungal susceptibility testing (AFST). The in vitro antifungal susceptibility testing was conducted following the Clinical and Laboratory Standards Institute (CLSI) guideline M27-A3, which outlines broth microdilution methods for yeast (13). AFST included fluconazole (128-0.125 μ g/mL), itraconazole (64-0.063 μ g/mL), tamoxifen (256-0.5 μ g/mL), panobinostat (512-1 μ g/mL), and miltefosine (256-0.5 μ g/mL), all procured from Sigma-Aldrich (St. Louis, MO, USA).

Reference strains of *Candida parapsilosis* (ATCC 22019) and *Candida krusei* (ATCC 6258) were utilized for the purposes of quality control (13). These strains have established MIC ranges for standard antifungal drugs (like fluconazole and itraconazole). If the test results for these strains fall within the accepted MIC range, we can trust the results for our clinical isolates. Tests were performed in triplicate to confirm reproducibility.

In vitro combination testing using the checker-board method. Synergistic effects between anticancer agents (tamoxifen, panobinostat, miltefosine) and azole antifungals (fluconazole, itraconazole) were assessed using the checkerboard microdilution technique based on CLSI protocols (14). The assay was performed in 96-well microplates (Suzhou Conrem Biomedical Technology Co., China).

Concentration ranges for each drug were selected according to MIC values determined for the individual isolates. In the assay setup, $50 \mu L$ of each con-

centration of the anticancer drugs was added across columns 1 to 10, and 50 μ L of azoles was dispensed along rows A to G. Row H contained azoles alone, while column 11 contained anticancer drugs alone. In addition, column 12 was used as the drug-free growth control. It is a well that contains no antifungal or anticancer drug—only the growth medium and the inoculum (yeast cells). This control represents 100% growth. Each well was inoculated with 100 μ L of a standardized yeast suspension, prepared from fresh colonies and adjusted to 1-3 \times 10³ CFU/mL based on optical transmittance at 530 nm set between 75-77%. Plates were incubated at 35°C for 24 hours before reading the results.

MIC endpoints were determined visually using a mirror reader and defined as the lowest drug concentration causing a \geq 50% growth reduction relative to the growth control. To characterize the interaction type between drugs, the fractional inhibitory concentration index (FICI) was calculated as follows:

$$FIC \ of \ drug \ A = \frac{MIC \ drug \ A \ when \ tested \ in \ combination \ with \ drug \ B}{MIC \ of \ drug \ A \ alone}$$

$$FIC \ of \ drug \ B = \frac{MIC \ drug \ B \ when \ tested \ in \ combination \ with \ drug \ A}{MIC \ of \ drug \ B \ alone}$$

 $FIC = FIC_A + FIC_B$

The interaction was considered synergistic when the FICI was \leq 0.5, indifferent when > 0.5 to \leq 4.0, and antagonistic when > 4.0 (14). All experiments were performed independently at least three times.

RESULTS

Table 1 presents the results of antifungal activity testing of panobinostat, tamoxifen, and miltefosine, both individually and in combination with conventional antifungal agents, against fluconazole-resistant *Candida* species.

Based on the FICI interpretation, the most notable synergistic interactions were observed for panobinostat combined with fluconazole against C. albicans and C. tropicalis isolates (100% synergy, FICI \leq 0.5). However, antagonistic effects were observed in C. parapsilosis and C. glabrata (100%, FICI > 4.0). In case of C. auris, the combination of panobinostat with fluconazole showed an indifferent interaction (FICI > 0.5 to \leq 4.0).

Furthermore, the combination of itraconazole with

panobinostat exhibited 100% synergistic effects against C. albicans (FICI \leq 0.5). In other species, the interaction was indifferent (FICI > 0.5 to \leq 4.0), except for C. glabrata, which showed 100% antagonism (FICI > 4.0).

In addition, the highest rate of synergy (100%) was observed for miltefosine combined with itraconazole against *C. albicans* isolates (FICI \leq 0.5). In contrast, miltefosine showed no synergistic or antagonistic interaction with fluconazole in any of the tested isolates (FICI > 0.5 to \leq 4.0).

Similarly, the combination of tamoxifen with itraconazole demonstrated 100% synergistic interaction against *C. albicans* isolates (FICI \leq 0.5). Conversely, it showed antagonistic effects (100%) against *C. tropicalis* (FICI > 4.0), and indifferent interactions with *C. auris*, *C. glabrata*, and *C. parapsilosis* (FICI > 0.5 to \leq 4.0).

DISCUSSION

The rising incidence of *Candida* infections, coupled with the emergence of both acquired and intrinsic resistance in certain non-albicans species to commonly used antifungal drugs, presents a significant clinical challenge. The recent global emergence of *Candida auris*, known for its cross-resistance to multiple antifungal classes, and the limited arsenal of approved antifungal medications—particularly for cancer patients facing antifungal-resistant *Candida* infections—underscore the urgent need for novel therapeutic approaches. Given that the discovery and development of new antifungal agents are often costly and time-intensive, current research increasingly focuses on uncovering synergistic effects between existing antifungals and other therapeutic agents.

This study evaluated the combined antifungal effects of three anticancer drugs—tamoxifen, panobinostat, and miltefosine—in combination with azole antifungals (fluconazole and itraconazole) against fluconazole-resistant *Candida* isolates. These particular anticancer drugs were selected due to their frequent use in oncology patients, who are notably vulnerable to candidiasis (9-11).

Our findings highlight the importance of species-specific identification for guiding combination therapy. For instance, tamoxifen paired with itraconazole exhibited synergistic activity against *C. albicans*, yet the same drug combination demonstrated

nazole-resistant Candida species. Table 1. The results of antifungal activity testing of panobinostat, tamoxifen, and miltefosine alone and in combination with fluconazole and itraconazole against each tested fluco-

			MIC	MIC alone (µg/ml)	g/ml)			MI	C in combi	MIC in combination (µg/ml)	nl)				FICI/INTER	FICI/INTERPRETATION	Z	
Strain Num.	SPP.	FLC	ITC	TAM	MIL	PAN	FLC/TAM	FLC/MIL	FLC/PAN	FLC/TAM FLC/MIL FLC/PAN ITC/TAM ITC/MIL	ITC/MIL	ITC/PAN	FLC/TAM	FLC/MIL	FLC/PAN	ITC/TAM	ITC/MIL	ITC/PAN
TMML 1290	C. albicans	128	0.5	128	2	64	16/64	16/1	16/4	0.125/8	0.125/0.25	0.125/8	0.625/IND	0.625/IND	0.187/SYN 0.3125/SYN 0.375/SYN	0.3125/SYN		0.375/SYN
TMML 1291	C. albicans	128	64	32	4	256	16/0.5	0.5/2	1/64	4/2	8/1	0.5/16	0.503/IND	0.503/IND	0.503/IND 0.257/SYN 0.125/SYN 0.375/SYN	0.125/SYN		0.063/SYN
TMML 1292	C. albicans	128	64	32	4	256	16/0.5	0.5/2	1/64	4/2	8/1	0.5/16	0.503/IND	0.503/IND	0.503/IND 0.257/SYN 0.125/SYN 0.375/SYN	0.125/SYN		0.063/SYN
TMML 1293	C. albicans	128	64	128	~	256	16/64	16/4	1/64	4/32	8/2	0.5/16	0.625/IND	0.625/IND		0.257/SYN 0.312/SYN	0.325/SYN	0.063/SYN
TMML 1294	C. albicans	128	0.063	32	4	256	16/0.5	0.5/2	1/64	0.031/4	0.031/0.5	0.031/16	0.503/IND	0.503/IND		0.31/SYN	0.257/SYN 0.31/SYN 0.375/SYN	0.375/SYN
TMML 1296	C. parapsilosis	32	0.063	32	16	32	8/16	16/4	128/16	0.031/16	0.031/8	0.031/16	0.75/IND	0.75/IND	4.5/ANT	1/IND	1/IND	1/IND
TMML 1297	C. parapsilosis	16	0.25	64	4	32	8/32	8/1	64/16	0.125/32	0.125/2	0.125/16	1/IND	0.75/IND	4.5/ANT	1/IND	1/IND	1/IND
TMML 1298	C. parapsilosis	16	0.125	128	2	128	8/16	8/1	64/16	0.0625/64	0.0625/1	0.0625/64	0.625/IND	1/IND	4.125/ANT	1/IND	1/IND	1/IND
TMML 1299	C. parapsilosis	16	0.125	128	4	128	32/32	16/2	64/64	0.0625/64	0.0625/1	0.0625/64	2.25/IND	1.5/IND	4.5/ANT	1/IND	1/IND	1/IND
TMML 1300	C. parapsilosis	16	0.063	128	2	128	8/16	8/1	64/16	0.031/64	0.031/1	0.031/64	0.625/IND	1/IND	4.125/ANT	1/IND	1/IND	1/IND
TMML 1301	C. parapsilosis	32	0.063	128	0.5	∞	8/64	16/0.5	16/32	0.031/64	0.031/0.25	0.031/64	0.75/IND	1.5/IND	4.5/ANT	1/IND	1/IND	1/IND
TMML 1305	C. auris	128	0.25	128	4	128	64/32	128/2	32/64	0.125/1	0.125/1	0.5/2	1/IND	1.5/IND	0.75/IND	0.507/IND	0.75/IND	2.015/IND
TMML 1307	C. glabrata	2	16	64	1	∞	4/32	4/0.5	16/32	8/8	8/0.5	2/32	0.562/IND	0.562/IND 0.5625/IND	4.25/ANT	0.625/IND	1/IND	4.125/ANT
TMML 1309	C. glabrata	2	16	32	∞	∞	1/16	16/8	4/32	8/8	0.5/4	1/32	0.5625/IND	1.5/IND	4.25/ANT	0.75/IND	0.531/IND	4.031/ANT
TMML 1310	C. glabrata	2	1	128	4	128	16/64	16/4	32/512	0.5/64	1/2	0.5/512	0.75/IND	1.25/IND	4.5/ANT	1/IND	1.5/IND	4.5/ANT
TMML 1311	C. glabrata	128	64	32	4	4	64/8	32/2	32/16	16/16	16/2	8/16	0.75/IND	0.75/IND	4.25/ANT	0.75/IND	0.75/IND	4.125/ANT
TMML 1312	C. glabrata	128	16	32	_	∞	32/16	64/0.5	4/32	8/8	2/0.5	4/32	0.75/IND	1/IND	4.031/ANT	0.75/IND	0.625/IND	4.25/ANT
TMML 1313	C. tropicalis	∞	0.25	128	32	128	2/64	2/16	0.5/16	0.125/512	0.5/16	0.5/64	0.75/IND	0.75/IND	0.127/SYN	4.5/ANT	2.05/IND	2.05/IND
TMML 1314	C. tropicalis	∞	0 021	178	3	128	2/16	2/16	1/16	0.015/128	0.015/16	0.015/64	0.625/IND	1/IND	0.375/SYN	4.5/ANT	1/IND	1/IND
TMML 1315	C. tropicalis	128	1	16	32	128	32/8	32/16	8/16	0.5/64	0.5/16	0.5/64	0.75/IND	0.75/IND	0.187/SYN	4.5/ANT	1/IND	1/IND
TMMI 1216		170	2	32	16	120	27/8	27/8	1/20	1/128	0.5/8	0.5/64	1/INID	UNI/26 U	NA3/8C U	1 5/A NT	0 75/INID	0 75/INID

SYN: synergistic, IND: indifferent, ANT: antagonistic. FLC: Fluconazole, ITC: Itraconazole, TAM: Tamoxifen, MIL:Miltefosine, PAN: Panobinostat, MIC: minimum inhibitory concentration, FICI: fractional inhibitory concentration index,

antagonism when tested against C. tropicalis.

To date, there is limited research on the joint application of anticancer drugs and antifungals against fluconazole-resistant *Candida* species. Barreto et al. reported that miltefosine effectively inhibited *C. auris* in both planktonic and biofilm forms, with enhanced activity when combined with alginate nanoparticles (15). Contrarily, in our study, miltefosine did not show interaction with fluconazole or itraconazole against *C. auris* isolates.

In agreement with our results, Su et al. demonstrated that panobinostat combined with fluconazole exerted synergistic antifungal effects against fluconazole-resistant *C. albicans* strains (7). However, many studies emphasize that drug interactions can range from antagonistic to synergistic outcomes depending on drug concentrations and host factors (16, 17).

Similarly, Muthular et al. found that tamoxifen inhibited the growth of both fluconazole-sensitive and fluconazole-resistant *C. albicans* in vitro, which aligns with our observations (8).

Overall, this research provides initial evidence supporting the potential utility of these drug combinations against resistant *Candida* species. Since all drugs examined are already FDA-approved for other indications, these findings may facilitate further investigations and clinical trials, particularly in cancer patients who are simultaneously managing fungal infections.

Moreover, the rise of resistant non-albicans species with diverse susceptibility patterns highlights the limitations of traditional mycological methods for *Candida* identification. Precise species-level diagnosis and tailored combination therapy are essential to effectively address antifungal resistance.

Ultimately, the long-term goal of this work is to encourage large-scale clinical studies to evaluate the efficacy of combination therapies for resistant *Candida* infections in cancer patients, with the potential to influence treatment guidelines both nationally and internationally.

CONCLUSION

The study could provide evidence supporting the efficacy of antifungal and anticancer drug combinations against resistant *Candida* species. Given that the drugs under investigation are already approved,

the results could serve as a basis for further advanced studies on the treatment of invasive *Candida* infections caused by resistant strains, particularly in cancer patients undergoing treatment with these medication.

REFERENCES

- Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non-albicans Candida species: immune response, evasion mechanisms, and new plant-derived alternative therapies. J Fungi (Basel) 2022; 9: 11.
- Kamali Sarvestani H, Mahmoudi S, Afarinesh Khaki P, Ansari S, Ghaderkhani S, Roostaei D, et al. Epidemiology, risk factors, species distribution, and antifungal susceptibility of candidemia among hospitalized patients with COVID-19. Curr Med Mycol 2021; 7: 12-18.
- Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, et al. Amphotericin B in the era of new Antifungals: where will it stand? *J Fungi (Basel)* 2024; 10: 278.
- Tortorano AM, Prigitano A, Morroni G, Brescini L, Barchiesi F. Candidemia: evolution of drug resistance and novel therapeutic approaches. *Infect Drug Resist* 2021; 14: 5543-5553.
- Jacobs SE, Jacobs JL, Dennis EK, Taimur S, Rana M, Patel D, et al. *Candida auris* pan-drug-resistant to four classes of antifungal agents. *Antimicrob Agents Chemother* 2022; 66(7): e0005322.
- Meletiadis J, Petraitis V, Petraitiene R, Lin P, Stergiopoulou T, Kelaher AM, et al. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro and in vivo correlation. *J Infect Dis* 2006; 194: 1008-1018.
- Su S, Shi X, Xu W, Li Y, Chen X, Jia S, et al. Antifungal activity and potential mechanism of panobinostat in combination with fluconazole against *Candida albicans. Front Microbiol* 2020; 11: 1584.
- 8. Carta F, Angeli A, Nielsen CD, Supuran CT, Cilibrizzi A (2019). New biological targets for the treatment of leishmaniasis. In: Medicinal Chemistry of Neglected and tropical diseases. 1st Edition. CRC Press.
- Sani A, Pourmadadi M, Shaghaghi M, Eshaghi MM, Shahmollaghamsary S, Arshad R, et al. Revolutionizing anticancer drug delivery: Exploring the potential of tamoxifen-loaded nanoformulations. *J Drug Deliv Sci Technol* 2023; 86: 104642.
- 10. Ganai SA. Panobinostat: the small molecule metalloenzyme inhibitor with marvelous anticancer activity. *Curr Top Med Chem* 2016; 16: 427-434.
- 11. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ.

ANTIFUNGAL ACTIVITY OF PANOBINOSTAT, TAMOXIFEN, AND MILTEFOSINE

- Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. *J Antimicrob Chemother* 2012; 67: 2576-2597.
- Kord M, Elmimoghaddam A, Hashemi SJ, Reziae S, Daie Ghazvini R, Salehi M, et al. Comparison of PCR-RFLP with 21-plex PCR and rDNA Sequencing for Identification of clinical yeast isolates. *Mycopathologia* 2021; 186: 213-220.
- Clinical and Laboratory Standards Institute (CLSI) (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3. Wayne, PA.
- 14. Odds FC. Synergy, antagonism, and what the chequer-board puts between them. *J Antimicrob Chemother*

- 2003; 52: 1.
- 15. Barreto TL, Rossato L, de Freitas AL, Meis JF, Lopes LB, Colombo AL, et al. Miltefosine as an alternative strategy in the treatment of the emerging fungus Candida auris. Int J Antimicrob Agents 2020; 56: 106049.
- 16. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. Combination antifungal therapy. *Antimicrob Agents Chemother* 2004; 48: 693-715.
- 17. Vaezi A, Moghadaszadeh M, Nasri E, Gharibi S, Diba K, Matkowski A, et al. In vitro activity of juglone (5-hydroxy-1,4-naphthoquinone) against both fluconazole-resistant and susceptible *Candida* isolates. *Rev Iberoam Micol* 2022; 39: 50-53.