

Volume 17 Number 5 (October 2025) 708-717 DOI: http://doi.org/10.18502/ijm.v17i5.19879

Helicobacter pylori dysregulates the expression of autophagy-related genes in human gastric adenocarcinoma cell line in vitro

Marzieh Esmaeilzadeh¹, Farshid Kafilzadeh¹, Mohammad Kargar², Hamid Asadzadeh Aghdaei³, Abbas Yadegar4*

¹Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran ²Department of Microbiology, Zand Institute of Higher Education, Shiraz, Iran ³Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran ⁴Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received: November 2024, Accepted: June 2025

ABSTRACT

Background and Objectives: Studies have indicated that Helicobacter pylori (H. pylori) infection could correlate with autophagy dysregulation. This research was undertaken to investigate whether H. pylori can dysregulate the expression of genes related to autophagy in human gastric adenocarcinoma (AGS) cells.

Materials and Methods: Ten H. pylori clinical isolates recovered from peptic ulcer disease (PUD) and chronic gastritis (CG) patients were used for cell infection assays. AGS cells infected with H. pylori strains at a multiplicity of infection (MOI) of 100 were incubated at 37°C for 12 h. The expression of autophagy-related genes (atg5, atg12, atg16L1, LC3B, and beclin-1) was determined in AGS cells by RT-qPCR. ELISA was applied to measure IL-8 production.

Results: The gene expression of atg5, atg12, atg16L1, LC3B was upregulated by both CG and PUD strains. The overexpression was more pronounced in PUD than CG strains. On the contrary, beclin-1 gene was downregulated in all H. pylori-infected AGS cells. In addition, H. pylori strains could significantly produce IL-8 in AGS cells.

Conclusion: Our in vitro study demonstrates that H. pylori could alter the expression of autophagy-related genes. Further investigation could precisely uncover the mechanism whereby H. pylori dysregulates host autophagy.

Keywords: Autophagy; Helicobacter pylori; Interleukin-8; Peptic ulcer; Gene expression

INTRODUCTION

Gastric or stomach cancer (GC) has the fifth highest prevalence among malignancies and is the third main reason for annual global death due to cancer (1). In the last few decades, Helicobacter pylori (H.

pylori) infection has been recognized as a primary cause of GC and a significant risk factor for this cancer type as it leads to gastritis that can progress to gastric atrophy and adenocarcinoma, metaplasia, and dysplasia (2, 3). In 1994, this pathogen was categorized by the World Health Organization (WHO) as a

*Corresponding author: Abbas Yadegar, Ph.D, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22432518; +98-9112352488 Fax: +98-21-22432527 Email: a.yadegar@sbmu.ac.ir

Copyright © 2025 The Authors. Published by Tehran University of Medical Sciences.

class 1 carcinogen and it was reported that almost all GC cases are associated with this bacterial species (4). Epidemiologically, *H. pylori* is capable of colonizing the gastric mucosa in about 50% of the human population in the world; however, the colonization rate varies significantly, being higher in developing than developed countries (5). A recent systematic review and meta-analysis has demonstrated that the prevalence of *H. pylori* infection differs significantly across various areas globally. Data from 32 countries have revealed that the highest prevalence of GC in *H. pylori*-infected patients was found in Japan (90.9%), while the lowest was observed in Sweden (0.07%) (6).

H. pylori is a microaerophilic, extracellular pathogen that infects humans by colonizing on the gastric epithelium surface, leading to chronic infections (7). H. pylori infection in many carriers does not cause any significant symptoms. However, it has been documented that prolonged and persistent H. pylori colonization greatly enhances the risk of developing various upper gastrointestinal disorders (8). Approximately 10% of infected people are susceptible to developing peptic ulcer disease (PUD). Moreover, 1-3% and <0.1% may develop GC and mucosa-associated lymphoid tissue (MALT) lymphoma, respectively (9).

Clinical manifestations of *H. pylori* infection are mainly dependent on the interplay between the virulence of the bacteria and the genetics of the host (10). The virulence factors of *H. pylori* are categorized into colonization, immune escape, and disease development, which are the three primary pathogenic processes (11). So far, several H. pylori putative virulence factors, such as cytotoxin-associated gene A (CagA) in the *cag* pathogenicity island (*cagPAI*), vacuolar cytotoxin A (VacA), urease, high-temperature requirement A (HtrA), gamma-glutamyltranspeptidase (HpGGT), outer inflammatory protein A (OipA), and neutrophil-activating protein (NAP) have been suggested to contribute to its pathogenicity (12). The VacA toxin and CagA oncoprotein are the most recognized virulence factors of H. pylori, considerably assisting in GC progression (13).

Evidence has reflected that *H. pylori* could evade autophagy or at least induce defective autophagy, a cellular physiological process that serves a tumor-suppressive function (14, 15). Recent findings have shown an association between the expression of autophagic-related proteins, including Beclin-1 and LC3, and GC prognosis (16). *H. pylori* can inhibit autophagy by activating various cellular signal-

ing pathways, such as Nod1-NF-KB/MAPK-ERK/FOXO4, which allow cell proliferation and tumorigenesis, ultimately leading to GC development (17, 18). Moreover, it has been reported that the disruption of autophagy caused by VacA enhances the accumulation of CagA in cells, inducing gastric carcinogenesis by CagA (19). This survey was undertaken to investigate how various clinical strains of *H. pylori* affect the expression of autophagy-related genes and the production of IL-8 in the human gastric adenocarcinoma (AGS) cell line.

MATERIALS AND METHODS

H. pylori clinical strains. Ten clinical strains of *H*. pylori isolated from Iranian cases were used for cell infection assays. The strains were sourced from five CG patients and five PUD patients. H. pylori strains were grown on Brucella agar culture plates (Merck, Germany) containing Campylobacter selective supplement (2.0, 0.05, and 1.0 mg/L of vancomycin, polymyxin, and trimethoprim, respectively), 10% fetal calf serum (FCS), 7% (v/v) horse blood, and amphotericin B (2.5 mg/L). All the plates were then incubated at room temperature under a microaerophilic atmosphere consisting of 10% CO , 5% O , and 85% N² for a time period of 3-5 days. Subsequently, H. pylori isolates were biochemically and genetically identified and analyzed for virulence determinants by PCR using specific primers as described elsewhere (20, 21). The features of the H. pylori strains included in the present study are summarized in Table 1.

Cell line and culture conditions. The AGS cell line (accession cell no. C10071), procured from the Iranian Biological Resource Center in Tehran (Iran), was cultivated in a complete medium comprising Dulbecco's modified Eagle medium (DMEM; Gibco, CA, USA) consisted of glutamine (2 mM), fetal bovine serum (FBS; 10%, Gibco), penicillin (100 U/ml), and streptomycin (100 μg/ml; Sigma-Aldrich, St. Louis, MO, USA). Finally, the cells were incubated in a humidified atmosphere (95% air and 5% CO₂) at 37°C.

Cell treatment and infection. AGS cells were plated in 24-well plates comprising DMEM medium at a density of approximately 5×10^4 cells/well. To achieve the appropriate confluency, the cells were incubated overnight. After attachment, cells at 80%

Table 1. Characterization of the *H. pylori* strains included in this study

No.	Strain ID	Virulence genotype						Patients			
		cagA	cagL	vacA	babA2	sabA	oipA	cagPAI	Clinical outcome	Age, yr	Gender
1	OC217	+	+	s2m2	+	+	Off	Partial	CG	42	F
2	OC485	+	+	s1m1	+	-	On	Intact	CG	54	M
3	OC494	+	+	s1m2	+	+	On	Intact	CG	42	F
4	OC751	+	+	s1m2	-	+	On	Intact	CG	44	F
5	OC840	-	+	s1m2	+	+	Off	Partial	CG	54	M
6	HC114	-	-	s1m2	+	+	On	Partial	PUD	49	F
7	OC557	+	+	s1m2	+	+	On	Partial	PUD	50	F
8	OC814	+	+	s1m1	+	+	On	Intact	PUD	25	F
9	OC913	+	+	s1m2	+	+	On	Intact	PUD	40	M
10	OC939	+	+	s1m2	+	+	On	Intact	PUD	54	M

PUD: peptic ulcer disease; CG: chronic gastritis; male (M), female (F).

confluence were rinsed two time with PBS (pH 7.2) and cultured in serum-free DMEM for 48 h. After harvesting from the Brucella agar plates and suspending in antibiotic-free DMEM medium containing 10% FBS, *H. pylori* strains were utilized to treat the AGS cells. Following infection with the above strains at a multiplicity of infection (MOI) of 100, the cells were incubated at room temperature for 24 h. Finally, the collected AGS cells were utilized for gene expression analysis and cytokine production.

RNA extraction and cDNA synthesis. The extraction of total RNA from infected AGS cells was conducted using the RNeasy Plus Mini Kit (Qiagen, Germany) as per the instruction recommended by the manufacturer with some modifications. The quality of extracted RNA and its quantity were measured by observing the distinct bands of ribosomal RNA (rRNA) on 2% agarose gel electrophoresis by use of a Thermo Scientific NanoDrop spectrophotometer (ND-1000, USA), with a ratio of A260 to 280. The conversion of purified RNA samples to cDNA was carried out by using a RT-kit (BioFACT, South Korea) in accordance with the protocol recommended by the manufacturer. The samples were maintained at the temperature of -80°C until gene expression analysis.

Quantitative real-time PCR. The expression of *atg5*, *atg12*, *atg16L1*, *LC3B*, and *beclin-1*, autophagy-related genes, was determined by RT-qPCR assay in *H. pylori*-infected AGS cells using specific primers (Table 2). Amplification was performed with 2× real-time PCR master mix (BioFACT) by employing

a Rotor-Gene Q (Qiagen) real-time PCR system. A melting curve was generated immediately following amplification to verify the specificity of PCR for each product. β -actin served as the internal control, and relative alterations in mRNA levels were evaluated by the comparative cycle threshold (Ct) method. All assays were performed in triplicate.

Cytokine detection by ELISA. Human IL-8 uncoated ELISA Kit (Invitrogen TM, Thermo Fisher Scientific) was used to measure the production of IL-8 cytokine in the supernatant of AGS cells. This process was conducted in accordance with the instructions provided by the manufacturer with minor medications. All samples underwent testing in triplicate.

Statistical analysis. GraphPad Prism 8.0 (CA, United States) was employed to calculate gene expression alterations and cytokine production. To assess differences between the study groups, we conducted a one-way analysis of variance (ANOVA), together with Tukey's post hoc test. Results were presented as the mean \pm standard error from a minimum of three experiments. Differences reaching P \leq 0.05 were considered statistically significant.

RESULTS

Characteristics of *H. pylori* **strains.** In current study, ten *H. pylori* strains isolated from CG (n=5) and PUD (n=5) patients were selected (Table 1). The strains were obtained from both men and women with

Table 2. The oligonucleotide sequences used in this study

Target gene	Oligonucleotide sequences (5' 3')	Tm (°C)	Amplicon (bp)	Ref.
atg12	F: AGTAGAGCGAACACGAACCATCC	57.1	110	(22)
	R: AAGGAGCAAAGGACTGATTCACATA	54.4		
atg5	F: AGAAGCTGTTTCGTCCTGTGG	54.4	152	(23)
	R: AGGTGTTTCCAACATTGGCTC	52.4		
atg16L1	F: ATGCGCGGATTGTCTCAGG	53.2	138	(24)
	R: GTCCACTCATTACACATTGCTCT	53.5		
LC3B	F: AACGGGCTGTGTGAGAAAAC	51.8	84	(25)
	R: AGTGAGGACTTTGGGTGTGG	53.8		
beclin-1	F: CTGAGGGATGGAAGGGTC	52.6	159	(22)
	R: TGGGCTGTGGTAAGTAATG	48.9		
β-actin	F: ATGTGGCCGAGGACTTTGATT	52.4	107	(26)
	R: AGTGGGGTGGCTTTTAGGATG	54.4		

a mean age of 46.5 years. Almost all *H. pylori* strains were *cagA*- and *cagL*-positive (80% and 90%, respectively), and more than half of the strains contained an intact *cagPAI*. Among the strains, the *vacA* allele s1m2 was the most common *vacA* genotype. All the strains from PUD patients were detected as *babA2*-and *sabA*-positive (100%), whereas 90% of the strains from CG patients carried these adhesion-associated genes. Interestingly, all the strains from PUD patients were examined for harboring *oipA* "on" motifs.

Expression of atg5, atg12, and atg16L1 level in H. pylori-infected AGS cells. To assess whether the clinical H. pylori strains could interfere with autophagy, we measured the gene expression of atg5, atg12, and atg16L1 in infected AGS cells. All H. pylori strains exhibited the capability of upregulating the expression of above-mentioned genes in AGS cells. However, the gene upregulation was detected as statistically significant upon exposure to some H. pylori strains, mostly the strains from PUD patients. Fig. 1 illustrates the expression levels of atg5, atg12, and atg16L1 in H. pylori-infected AGS cells relative to uninfected AGS cells that served as the control group. The exact fold changes and 95% confidence intervals of target genes in AGS cells infected with H. pylori strains are presented in Table 1.

Expression level of *LC3B* **in** *H. pylori***-infected AGS cells.** The expression level of *LC3B*, a key autophagy marker, was examined. The *LC3B* expression level was elevated by all strains of *H. pylori* in comparison to uninfected AGS cells (Fig. 2). However, *H.*

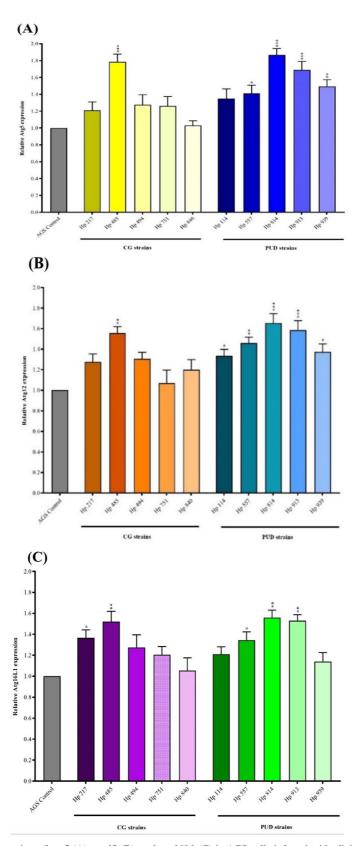
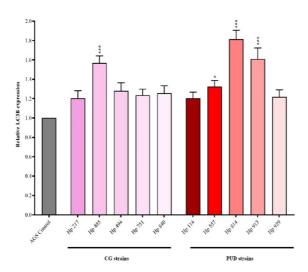
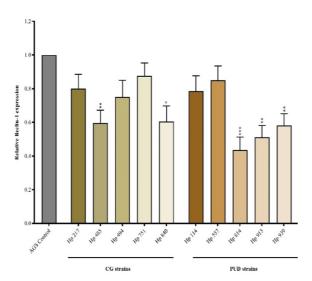
pylori strains from PUD patients, relative to the strains from GC patients, revealed a stronger effect on the gene upregulation of *LC3B*.

Expression level of *beclin-1* in *H. pylori*-infected AGS cells. In our investigation, the *beclin-1* mRNA expression level was determined due to the importance of this protein in autophagy. As shown in Fig. 3, the *beclin-1* gene was downregulated in all *H. pylo-ri*-infected AGS cells. However, *H. pylori* strains from PUD patients markedly reduced the expression of *beclin-1* level in comparison to strains from CG patients.

IL-8 production in *H. pylori*-infected AGS cells. We examined if *H. pylori* strains stimulate the production of IL-8 in gastric epithelial cells by infecting AGS cells with 10 clinical strains obtained from both CG and PUD cases. As shown in Fig. 4, all *H. pylori* strains elevated the IL-8 production in AGS cells. However, no major differences were detected between strains from CG and PUD cases. Moreover, statistically significant difference between higher IL-8 levels and greater upregulation or downregulation of autophagy genes were observed to be non-significant.

DISCUSSION

The host immune system against bacterial pathogens needs the coordination of multiple innate immune signaling pathways (27). The recognition of molecular patterns associated with pathogens by the innate immune system receptors could trigger vari-

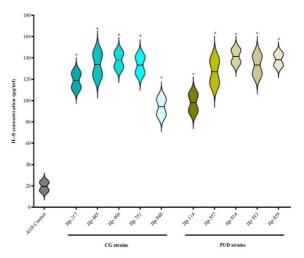

Fig. 1. The relative gene expression of atg5 (A), atg12 (B), and atg16L1 (C) in AGS cells infected with clinical H. pylori strains isolated from patients with chronic gastritis (CG) and peptic ulcer disease (PUD) after 24 h of exposure. Gene expression data were normalized to β-actin as the reference gene. Data are presented as mean \pm SD from three independent experiments. A P value of <0.05 was considered significant (*P <0.05; **P <0.01; ***P <0.001; ****P <0.0001) by one-way ANOVA statistical analysis.

Fig. 2. The relative gene expression of *LC3B* in AGS cells infected with clinical *H. pylori* strains isolated from patients with chronic gastritis (CG) and peptic ulcer disease (PUD) after 24 h of exposure. Gene expression data were normalized to β-actin as the reference gene. Data are presented as mean \pm SD from three independent experiments. A P value of <0.05 was considered significant (*P <0.05; **P <0.01; ****P <0.001; ****P <0.001) by one-way ANOVA statistical analysis.

Fig. 3. The relative gene expression of *beclin-1* in AGS cells infected with clinical *H. pylori* strains isolated from patients with chronic gastritis (CG) and peptic ulcer disease (PUD) after 24 h of exposure. Gene expression data were normalized to β-actin as the reference gene. Data are presented as mean \pm SD from three independent experiments. A P value of <0.05 was considered significant (*P <0.05; **P <0.01; ***P <0.001; ***P <0.001) by one-way ANOVA statistical analysis.

Fig. 4. The production of proinflammatory cytokine IL-8 measured by ELISA in AGS cells infected with clinical H. pylori strains isolated from patients with chronic gastritis (CG) and peptic ulcer disease (PUD) after 24 h of exposure. Data are presented as mean \pm SD from three independent experiments. A P value of <0.05 was considered significant (*P <0.05; **P <0.01; ***P <0.001; ****P <0.0001) by one-way ANOVA statistical analysis.

ous intracellular signaling pathways, activating host antibacterial defense mechanisms to eliminate the microbial agent (28). Autophagy has long been considered to be one of the dynamic processes located downstream of the innate immune-associated receptors and to have a critical role in resisting various microbial pathogens (29). Although various microbial pathogens are targeted and eradicated by the autophagy machinery, some bacterial pathogens have been identified to evade this defense mechanism or even manipulate the autophagy process to enhance their survival (30, 31). For instance, intracellular pathogens Yersinia enterocolitica, Francisella tularensis, and Orientia tsutsugamushi have been described to evade autophagy; however, host features and the exact bacterial virulence factors that contribute to their evasion have not been thoroughly clarified (32-34). Moreover, the dysregulation of autophagy machinery during the crosstalk of microorganisms and the host can not only develop numerous types of cancers but also trigger tumor cell survival (35). Accordingly, the role of autophagy induced by Porphyromonas gingivalis in oral cancer cell proliferation and by Fusobacterium nucleatum in colorectal cancer pathogenesis has previously been described (36, 37).

Given the recent reports highlighting the interac-

tion between autophagy and H. pylori infection, our study attempted to investigate whether clinical H. pylori strains from CG and PUD could regulate the expression of genes related to autophagy proteins. The main observation was that overexpression in autophagy-related genes, except beclin-1, could happen in relation to *H. pylori* infection. Our findings align with those of Courtois et al. who found that the expression of genes involved in the autophagy process and the number of autophagosomes increased, indicating that H. pylori infection triggers autophagy and could be implicated in developing gastric cancer stem cells (38). During H. pylori infection, autophagy could be induced and activated, mainly due to the outer membrane vesicles (OMVs), VacA, and HP0175 of the bacterium (39). The HP0175 antigen has been demonstrated to upregulate the expression of genes associated with autophagy, independent of functional VacA during acute infection (40). However, it has formerly been explored that many intracellular pathogens could inhibit autophagy by downregulating autophagy-related genes (41). In contrast, Tanaka et al. reported the downregulation of ATG16L1, ATG5, ATG4D, and ATG9A genes, as the main autophagy machinery factors, by using high-throughput microarray analysis (42). Altogether, these observations indicate that infection with H. pylori may result in partially incomplete autophagy without content degradation, meaning that autophagy could be induced but not completely activated. In other words, a proportion of autophagy-related genes are upregulated and others are downregulated. The reason for the induction of this partial autophagy could be the accumulation of malfunctioning autophagosomes containing H. pylori. This process limits exposure to antibiotics and promotes bacterium's survival within cells, potentially providing a favorable environment for H. pylori within gastric epithelial cells (43, 44). Additionally, according to a study by Xie et al., H. pylori infection increases autophagy in the early stages of infection, but in later stages it is able to inhibit the autophagy pathway by reducing Rad51 expression (45). The discrepancy among these studies could be attributed to difference in infection phases. While the current study focused and investigated early gene expression responses, other studies focused on autophagy flux during long-term infection, where inhibition is more likely to occur. To confirm this hypothesis, additional investigations are needed to clarify the exact mechanism and functional role of *H. pylori* infection in the expression of autophagy-related genes during its pathogenesis, particularly in inflamed and cancerous tissues.

Our current observations reveal that H. pylori strains from PUD patients were more likely to upregulate the core component autophagy-related genes, whereas CG strains were less able to stimulate. The diversity of clinical strains has a critical role in characterizing host-pathogen interactions. Considering that variations in virulence factors, genetic patterns, and host immune response stimulation could lead to distinct activation of autophagy and inflammatory pathways. This heterogenicity may explain the wide spectrum of H. pylori infection-associated clinical outcomes (46, 47). It has previously been proven that long-term H. pylori infection could prevent not only autophagy but also apoptosis processes via the Nod1-NF-kB/ MAPK-ERK/FOXO4 signaling pathway, thus resulting in the onset of GC (48, 49). On the other hand, recent surveys exhibit that the process of autophagy can be activated and induced by VacA, CagA, HpGGT, and HP0175, the virulence factors of H. pylori, in the epithelial cells of the gastric mucosa (40, 50-52). Accordingly, these outcomes demonstrate that the acute H. pylori infection can induce autophagosome formation, while the downregulation of autophagy-related proteins and their downstream genes induced by H. pylori could inhibit the autophagy process and enhance the growth and proliferation of tumor cells, consequently developing GC. Notably, the exact mechanisms of autophagy controlled by H. pylori infection are rather complicated, and further investigations are needed to meticulously explicate the involved factors and mechanisms. Huang et al. previously described that beclin-1 expression was notably downregulated in GC linked to CagA-positive H. pylori infection (53), which supports the results of our study.

Beclin-1-mediated autophagy has been described to suppress myr-Akt1-driven tumorigenesis and could hence decrease tumor cellular proliferation and increase tumor cell death (54). Moreover, *beclin-1* overexpression has been shown to obviously mitigate the capability of gastric cancerous cells in migrating and invading, probably through vascular endothelial growth factor (VEGF) dysregulation (55). These data suggest that *H. pylori* colonization could have a link with autophagy suppression in the metastasis and neoplasia of GC.

CONCLUSION

According to results of current study, the mechanisms of *H. pylori*-mediated autophagy dysregulation in the gastric epithelial cells are extremely complicated. Infection with H. pylori could result in changes in autophagy-related gene expression through multifactor signaling pathways. Several protein network regulation systems have been recognized to play their respective roles in the dysregulation of autophagy in human host cells and interact with each other. Once an autophagy-related gene is dysregulated or abnormally downregulated, it can trigger a chain of cellular processes and damages, ultimately developing gastric cancer. Hence, successful treatment of H. pylori infection targeting autophagy-related pathways could be considered a novel strategy, signifying a new approach to treat H. pylori-induced GC that engages different host-microbial interactions. However, it is necessary to note that current results on autophagy dysregulation are based on mRNA expression levels and functional validation of autophagic flux was not performed. Furthermore, these in vitro investigations may not clearly reflect in vivo or clinical conditions.

ACKNOWLEDGEMENTS

We would like to thank the staff of Foodborne and Waterborne Diseases Research Center in Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran, as well as Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.

REFERENCES

- Venerito M, Ford AC, Rokkas T, Malfertheiner P. Review: Prevention and management of gastric cancer. *Helicobacter* 2020; 25 Suppl 1: e12740.
- 2. Duan Y, Xu Y, Dou Y, Xu D. *Helicobacter pylori* and gastric cancer: mechanisms and new perspectives. *J Hematol Oncol* 2025; 18: 10.
- 3. Díaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol 2018; 9: 5.
- 4. Tshibangu-Kabamba E, Yamaoka Y. Helicobacter py-

- *lori* infection and antibiotic resistance from biology to clinical implications. *Nat Rev Gastroenterol Hepatol* 2021; 18: 613-629.
- 5. Sonnenberg A. Epidemiology of *Helicobacter pylori*. *Aliment Pharmacol Ther* 2022; 55 Suppl 1: S1-S13.
- Shirani M, Pakzad R, Haddadi MH, Akrami S, Asadi A, Kazemian H, et al. The global prevalence of gastric cancer in *Helicobacter pylori*-infected individuals: a systematic review and meta-analysis. *BMC Infect Dis* 2023; 23: 543.
- 7. Wroblewski LE, Peek RM Jr, Wilson KT. *Helicobacter pylori* and gastric cancer: factors that modulate disease risk. *Clin Microbiol Rev* 2010; 23: 713-739.
- 8. Peek RM Jr, Crabtree JE. *Helicobacter* infection and gastric neoplasia. *J Pathol* 2006; 208: 233-248.
- Mera R, Fontham ET, Bravo LE, Bravo JC, Piazuelo MB, Camargo MC, et al. Long term follow up of patients treated for *Helicobacter pylori* infection. *Gut* 2005; 54: 1536-1540.
- Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in *Helicobacter pylori* management. *Gut Microbes* 2022; 14: 2108655.
- 11. Kao C-Y, Sheu B-S, Wu J-J. *Helicobacter pylori* infection: An overview of bacterial virulence factors and pathogenesis. *Biomed J* 2016; 39: 14-23.
- 12. Šterbenc A, Jarc E, Poljak M, Homan M. *Helicobacter pylori* virulence genes. *World J Gastroenterol* 2019; 25: 4870-4884.
- Nabavi-Rad A, Yadegar A, Sadeghi A, Aghdaei HA, Zali MR, Klionsky DJ, et al. The interaction between autophagy, *Helicobacter pylori*, and gut microbiota in gastric carcinogenesis. *Trends Microbiol* 2023; 31: 1024-1043.
- 14. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. *Mol Cancer* 2020; 19: 12.
- 15. Sadeghloo Z, Saffarian P, Hakemi-Vala M, Sadeghi A, Yadegar A. The modulatory effect of *Lactobacillus gasseri* ATCC 33323 on autophagy induced by extracellular vesicles of *Helicobacter pylori* in gastric epithelial cells in vitro. *Microb Pathog* 2024; 188: 106559.
- 16. Ieni A, Cardia R, Giuffrè G, Rigoli L, Caruso RA, Tuccari G. Immunohistochemical expression of autophagy-related proteins in advanced tubular gastric adenocarcinomas and its implications. *Cancers (Basel)* 2019; 11: 389.
- Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of *Helico-bacter pylori* CagA that underpin gastric carcinogenesis. *Cell Mol Immunol* 2020; 17: 50-63.
- 18. Eslami M, Yousefi B, Kokhaei P, Arabkari V, Ghasemian A. Current information on the association of *Helicobacter pylori* with autophagy and gastric cancer. *J Cell*

- Physiol 2019; 234: 14800-14811.
- Abdullah M, Greenfield LK, Bronte-Tinkew D, Capurro MI, Rizzuti D, Jones NL. VacA promotes CagA accumulation in gastric epithelial cells during *Helicobacter* pylori infection. Sci Rep 2019; 9: 38.
- 20. Farzi N, Yadegar A, Aghdaei HA, Yamaoka Y, Zali MR. Genetic diversity and functional analysis of *oipA* gene in association with other virulence factors among *Helicobacter pylori* isolates from Iranian patients with different gastric diseases. *Infect Genet Evol* 2018; 60: 26-34.
- 21. Azizimoghaddam Y, Kermanpour S, Mirzaei N, Houri H, Nabavi-Rad A, Asadzadeh Aghdaei H, et al. Genetic diversity of *Helicobacter pylori* type IV secretion system *cagI* and *cagN* genes and their association with clinical diseases. *Sci Rep* 2023; 13: 10264.
- Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, et al. Compromised autophagy by MIR30B benefits the intracellular survival of *Helicobacter pylori*. *Autophagy* 2012; 8: 1045-1057.
- 23. Wu M, Chen B, Pan X, Su J. Prognostic value of autophagy-related proteins in human gastric cancer. *Cancer Manag Res* 2020; 12: 13527-13540.
- 24. Li J, Wang P, Xie Z, Yang R, Li Y, Wu X, et al. Elevated TRAF4 expression impaired LPS-induced autophagy in mesenchymal stem cells from ankylosing spondylitis patients. *Exp Mol Med* 2017; 49(6): e343.
- 25. Keulers TG, Koch A, van Gisbergen MW, Barbeau LMO, Zonneveld MI, de Jong MC, et al. ATG12 deficiency results in intracellular glutamine depletion, abrogation of tumor hypoxia and a favorable prognosis in cancer. *Autophagy* 2022; 18: 1898-1914.
- 26. Fu J, Bian L, Zhao L, Dong Z, Gao X, Luan H, et al. Identification of genes for normalization of quantitative real-time PCR data in ovarian tissues. *Acta Biochim Biophys Sin (Shanghai)* 2010; 42: 568-574.
- Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024;
 fuae019.
- 28. Li D, Wu M. Pattern recognition receptors in health and diseases. *Signal Transduct Target* Ther 2021; 6: 291.
- 29. Yuk J-M, Yoshimori T, Jo E-K. Autophagy and bacterial infectious diseases. *Exp Mol Med* 2012; 44: 99-108.
- 30. Huang J, Brumell JH. Bacteria—autophagy interplay: a battle for survival. *Nat Rev Microbiol* 2014; 12: 101-114.
- 31. Bah A, Vergne I. Macrophage autophagy and bacterial infections. *Front Immunol* 2017; 8: 1483.
- 32. Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, et al. Cytosolic clearance of replication-deficient mutants reveals *Francisella tularensis* interactions with the autophagic pathway. *Autophagy* 2012; 8: 1342-1356.
- 33. Deuretzbacher A, Czymmeck N, Reimer R, Trulzsch K, Gaus K, Hohenberg H, et al. β1 integrin-dependent

- engulfment of *Yersinia enterocolitica* by macrophages is coupled to the activation of autophagy and suppressed by type III protein secretion. *J Immunol* 2009; 183: 5847-5860.
- 34. Choi J-H, Cheong T-C, Ha N-Y, Ko Y, Cho C-H, Jeon J-H, et al. *Orientia tsutsugamushi* subverts dendritic cell functions by escaping from autophagy and impairing their migration. *PLoS Negl Trop Dis* 2013; 7(1): e1981.
- 35. Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, et al. Crosstalk between autophagy and microbiota in cancer progression. *Mol Cancer* 2021; 20: 163.
- 36. Cho TJ, Wee SW, Woo VH, Choi JI, Kim SJ, Shin HI, et al. *Porphyromonas gingivalis*-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells. *Arch Oral Biol* 2014; 59: 370-378.
- 37. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. *Fuso-bacterium nucleatum* promotes chemoresistance to colorectal cancer by modulating autophagy. *Cell* 2017; 170: 548-563. el6.
- Courtois S, Haykal M, Bodineau C, Sifré E, Azzi-Martin L, Ménard A, et al. Autophagy induced by Helicobacter pylori infection is necessary for gastric cancer stem cell emergence. Gastric Cancer 2021; 24: 133-144.
- Zhang F, Chen C, Hu J, Su R, Zhang J, Han Z, et al. Molecular mechanism of *Helicobacter pylori*-induced autophagy in gastric cancer. *Oncol Lett* 2019; 18: 6221-6227.
- 40. Halder P, Datta C, Kumar R, Sharma AK, Basu J, Kundu M. The secreted antigen, HP0175, of *Helicobacter pylori* links the unfolded protein response (UPR) to autophagy in gastric epithelial cells. *Cell Microbiol* 2015; 17: 714-729.
- 41. Pareja ME, Colombo MI. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. *Front Cell Infect Microbiol* 2013; 3: 54.
- 42. Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y. Autophagy-related genes in *Helicobacter pylori* infection. *Helicobacter* 2017; 22: 10.1111/hel.12376.
- 43. Wang Y-h, Lv Z-f, Zhong Y, Liu D-s, Chen S-p, Xie Y. The internalization of *Helicobacter pylori* plays a role in the failure of *H. pylori* eradication. *Helicobacter* 2017; 22: 10.1111/hel.12324.
- 44. Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M, Wong H, et al. VacA generates a protective intracellular reservoir for *Helicobacter pylori* that is eliminated by activation of the lysosomal calcium channel TRPML1. *Nat Micro*biol 2019; 4: 1411-1423.
- 45. Xie C, Li N, Wang H, He C, Hu Y, Peng C, et al. Inhibition of autophagy aggravates DNA damage response and gastric tumorigenesis via Rad51 ubiquitination in response to *H. pylori* infection. *Gut Microbes* 2020; 11:

- 1567-1589.
- 46. Yamaoka Y. Mechanisms of disease: *Helicobacter pylori* virulence factors. *Nat Rev Gastroenterol Hepatol* 2010; 7: 629-641.
- 47. Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. *Autophagy* 2025; 21: 260-282.
- 48. Yang Y, Shu X, Xie C. An overview of autophagy in *Helicobacter pylori* infection and related gastric cancer. *Front Cell Infect Microbiol* 2022; 12: 847716.
- 49. Puissant A, Fenouille N, Auberger P. When autophagy meets cancer through p62/SQSTM1. *Am J Cancer Res* 2012; 2: 397-413.
- 50. Ricci V. Relationship between VacA toxin and host cell autophagy in *Helicobacter pylori* infection of the human stomach: a few answers, many questions. *Toxins* (*Basel*) 2016; 8: 203.
- 51. Li N, Tang B, Jia YP, Zhu P, Zhuang Y, Fang Y, et al. Helicobacter pylori CagA protein negatively regulates

- autophagy and promotes inflammatory response via c-Met-PI3K/Akt-mTOR signaling pathway. *Front Cell Infect Microbiol* 2017; 7: 417.
- 52. Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. *Cell Host Microbe* 2014; 15: 623-635.
- 53. Huang X, Wang C, Sun J, Luo J, You J, Liao L, et al. Clinical value of CagA, c-Met, PI3K and Beclin-1 expressed in gastric cancer and their association with prognosis. *Oncol Lett* 2018; 15: 947-955.
- 54. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. *Science* 2012; 338: 956-959.
- 55. Zhu X, Wang Y, Xue W, Wang R, Wang L, Zhu ML, et al. The VEGFR-2 protein and the VEGFR-2 rs1870377 A>T genetic polymorphism are prognostic factors for gastric cancer. *Cancer Biol Ther* 2019; 20: 497-504.