

Volume 17 Number 5 (October 2025) 682-694 DOI: http://doi.org/10.18502/ijm.v17i5.19876

Application of Saccharomyces boulardii in feed to improve health, wellness and productivity

Alaleh Zoghi, Kianoush Khosravi-Darani*

Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran,

Received: July 2024, Accepted: September 2025

ABSTRACT

One of the main pillars of human health depends on healthy nutrition. Chicken makes up a significant part of human nutrition particularly in societies experiencing economic inflation and severe disruptions to people's livelihoods. So livestock and poultry pose a crucial impact on food safety and immunity. Probiotics have acquired worldwide acceptance as a healthy ingredient for usage as a potential feed supplement to reduce food-borne diseases and confirm food hygiene from farm to fork. Feed additives containing live yeast, e.g. Saccharomyces boulardii, and yeast derivative products can increase feed intake and intestinal health, and improve productivity. This probiotic, non-pathogenic yeast possesses several health-beneficial properties for poultry and livestock. However, it was previously believed that yeast did not have an effective probiotic effect in chicken and poultry. In this review, the advantages of using Saccharomyces boulardii has been introduced as a probiotic for poultry and livestock. This comprehensive analysis explores the multifaceted applications of probiotics in animal feed from health and AMR perspectives, examining their mechanisms of action, benefits, and potential to transform sustainable animal production practices.

Keywords: Probiotics; Yeasts; Saccharomyces boulardii; Chickens; Meat; Health

INTRODUCTION

Livestock and poultry have been and will continue to be critical to human well-being. Nutritional scientists, microbiologists, and biochemists have placed a high priority on developing techniques to enhance poultry and livestock output over the past 30 years (1). To accomplish the aforementioned objectives, application of probiotic in the livestock and poultry feed is growing to avoid antimicrobial resistance (AMR) (2). Probiotics are live microorganisms that, when administered in sufficient doses, can improve the host's health. Probiotics are typically advised to assist in improving host defenses and speeding up the recovery from sickness. Health beneficial impacts depends on strain, dose, duration of probiotic consumption, as well as the physiological state of the host (3). Probiotics are alternative to antimicrobial growth promoters (AGPs) in livestock and poultry production systems. The poultry industry, which contributes 37% of global meat production, along with other livestock sectors, faces mounting pressure to reduce antibiotic use.

*Corresponding author: Kianoush Khosravi-Darani, Ph.D, Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Tel: +98-21-22086348; +98-912-5378919 Fax: +98-21-22376473 Email: k.khosravi@sbmu.ac.ir; kiankh@yahoo.com

Copyright © 2025 The Authors. Published by Tehran University of Medical Sciences.

Yeasts, either live strains or derivatives of their cell walls, are a significant source of probiotic products. The demand for natural and organic poultry and livestock products has increased, leading to greater use of probiotics. Probiotics are appealing to consumers who prefer products with minimal synthetic additives or antibiotics. Probiotics can improve meat and egg quality, which is beneficial as the global population grows (4).

The probiotic properties of Saccharomyces cerevisiae strains have been studied several times. Also, S. cerevisiae has long been a part of the diets of domestic animals. S. cerevisiae var. boulardii is a unicellular, low-cost active yeast with probiotic potential properties. S. boulardii is one of the most well-known yeasts used as a feed supplement in poultry and livestock. S. boulardii has been discovered to enhance intestinal health, trigger innate immunity, and collaborate with intestine-resident microorganisms to safeguard the intestinal mucosa when taken orally. S. boulardii with anti-inflammatory properties is enriched in nutrients and modulates the host immune response (5). According to studies, S. boulardii helps to break down dietary phytate to increase the nutritional value of feed (6). Furthermore, its probiotic actions facilitate intestinal transit, thereby improving host immunity, nutrient absorption, and digestion (7).

In the past ten years, a lot of research and review articles have been written regarding the use of *S. cerevisiae* for poultry and livestock. So, a review is required to indicate the potential of *S. boulardii* for use in poultry and livestock farms in various aspects. Thus, the aim of this review article is to investigate the evidence for the application of *S. boulardii* in poultry and livestock fields. This overview includes a summary of the *S. boulardii* introduction and an explanation of this yeast's health effects and mechanisms of action on poultry and livestock. Finally, the significance of this yeast on production parameters in poultry and livestock farms is described.

Search strategy. This section describes how the literature for review was chosen. ISI Web of Knowledge, Science Direct, Scopus, PubMed, and Google Scholar were explored for articles limited by language. To find additional articles, the reference lists of each article were thoroughly reviewed. Hand searches were carried out on other papers cross-indexed by authors, comments, reviews, meeting abstracts, and books. Search terms included: probiotics, *Saccharomyces*

boulardii, yeast, poultry, livestock, and associated author names.

Saccharomyces boulardii. Saccharomyces species are known especially S. cerevisiae and S. boulardii (8). This yeast grows rapidly with a wide ability to metabolize carbohydrates (9). S. cerevisiae strains have been used for brewing and baking for a very long time. S. boulardii, a closely related strain, was found in 1920 by Henri Boulard, a French microbiologist who was in Indo-China looking for new yeast strains that could be used in fermenting processes (10).

S. boulardii has oval to spherical cells that are around 3 μm thick and 2-10 μm long. By budding and unifying, this yeast is capable of both sexual and asexual reproduction. The existence of mannose, glucose, and N-acetylglucosamine in S. boulardii was established by biochemical characterization up to 20%, 90%, and 2%, respectively. Its lateral cell wall consists of 1-2% total dry-weight straight chitin chains (11, 12). Because of its adaptable genome, S. boulardii is of particular interest. Its genome is 22% similar to the hominid genome (13).

S. boulardii has a 37°C optimal development temperature. It is resistant to low pH and can also tolerate bile acids, which makes it more competitive in the gut microenvironment, whereas other S. cerevisiae strains do not thrive in acidic pH levels and prefer lower temperatures (30-33°C) (14). Additionally, changes in the microbiome increase short-chain fatty acid production in both Saccharomyces species. Furthermore, pathogens can be eliminated directly using secretory antimicrobials. S. boulardii can also agglutinate pathogens (15). S. boulardii is an extensively utilized and researched direct-fed microbe in livestock and poultry. Based on the available data, there is no strong justification for using Saccharomyces in animal feed, except for the proven health benefits of S. boulardii in humans (9). S. boulardii also offers nutritional value (12). However, studies indicate that S. boulardii can readily accumulate harmful elements such as lead, cadmium, arsenic, and mercury (16).

The implication of *S. boulardii* for domestic animals' health. The health-promoting effects of *S. boulardii* for poultry and livestock are generally illustrated in Fig. 1. The following criteria can be used to identify the potential mechanisms behind the health benefits of *S. boulardii* as an effective probiotic in animal production:

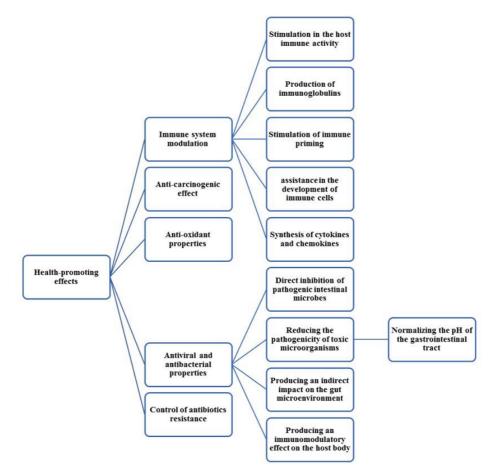


Fig. 1. Health-promoting effects of Saccharomyces boulardii for poultry and livestock

Adhesion capacity to intestinal cells (i), feed digestibility (ii), stimulation of digestive enzyme activity (iii), immunostimulant impact (iv), high acidity tolerance (v), bile salts resistance (vi), and improvement of gut morphological structure (vii) (17).

Health effects of *S. boulardii* for livestock. Increased IgM and IgA activity against pathogens, improved mucosal immunity, bioremoval of mycotoxins, improved gut microbiota, and a reduction in postweaning diarrhea are all potential benefits of yeast supplements in livestock feed (18). Also, the advantages of yeast as a probiotic in livestock feeds were detailed in a study (19). According to their findings, adding live yeast can enhance fiber digestibility, reduce infection growth, produce antibiotic compounds, improve gut structure, and boost the immune system.

The gut is the site of nutrient absorption as well as the animal's first line of defense against infections and other hazardous chemicals. *S. boulardii* may play

a substantial function in immunomodulation in this anatomical site (20). Magalhães et al. (21) attempted to evaluate certain innate immune system parameters in vivo and discovered that feeding yeast culture products to calves was not effective. According to their results, the presence of oligosaccharides in yeast culture could have increased neutrophil phagocytic activity.

Zhang et al. (22) discovered that using *S. boular-dii* mafic-1701 decreased the pro-inflammatory cytokines IL-6 and TNF- α levels in weaned piglets. In another study, *S. boulardii* was found to reduce IL-6 and TNF- α levels in rat ulcerative colitis carcinogenesis models (23).

The microorganisms in the mammalian gut are extremely diverse. The gut is thought to be home to 500-1000 bacterial species. The gut microbiota and the host have a symbiotic relationship. As Zhang et al. (22) discovered in the colon of weaned piglets, Proteobacteria were more prevalent after oral intake of feed supplements such as *S. boulardii* than Firmic-

utes and Bacteroidetes.

A healthy calf will grow quickly and perform well in the future (21). Calves may experience heat stress as a result of stressful environmental variables, including higher temperatures and excessive humidity. Due to decreased feed intake, compromised homeostatic processes, and changed physiological conditions, including the endocrine and immunological systems, calves exposed to heat stress perform poorly in terms of growth. As a result, decreased feed intake and decreased physiological responses may occasionally result in calf death, calf diarrhea outbreaks, and poor growth (25). When S. boulardii CNCM I-1079 is added to milk replacer, it can decrease the harmful effects of heat stress on Holstein dairy calves (26). In contrast, a prior study found that after giving S. boulardii to calves through oral infusion, neither the calves' development nor their ability to consume dry matter improved (27). These findings imply that S. boulardii can increase dry matter intake while having no impact on body weight gain in calves at this stage of their growth cycle.

Health effects of *S. boulardii* for poultry. Using *S. boulardii* can help prevent diarrhea in chiecken (28). According to a recent study, *S. boulardii* was effective to increase enzyme activities, improve morphology, and induce cytokine production in the duodenum (7). Also, adding *S. boulardii* to bird diets has been demonstrated to improve the sensory and qualitative attributes of meat generated from animals as well as the immune response of the birds (29).

The function of S. boulardii as a pathogenic bacteria reducer. Increased resistance to infection by enteric pathogens such as Salmonella, Campylobacter jejuni, C. perfringens, or E. coli is a benefit of yeast probiotic supplements in poultry (30). Because of S. boulardii's antagonistic effect, it can lessen pathogens' transmission and emission, reduce permeability of diarrhea, improve clinical signs, enhance immunity, and cause overall health and disease resistance. Also, they suppress foodborne pathogens like Salmonella, E. coli, and Campylobacter, thus improving nutrient absorption and intestinal digestion, and also supporting a healthy microecological state (2). Campylobacter is present in farm area, and causes campylobacteriosis in broilers (31). S. boulardii can inhibit its growth in poultry (32).

According to Abudabos et al. (33), broilers infect-

ed with *Salmonella* who were fed diets supplemented with *Bacillus subtilis*, *S. boulardii*, and oregano showed improvements in plasma total protein and glucose levels. Probiotics' capacity to enhance dietary protein digestion and utilization by raising the small intestine's absorptive efficiency may be responsible for the rise in blood protein levels. It is still unknown how *S. boulardii* reduces *Salmonella* colonization. Potential mechanisms include yeast's ability to agglutinate pathogens such as *Salmonella* and *E. coli*, both of which express mannose-specific type-1 fimbriae (34).

The impact on gut microbiota and protection against *Campylobacter jejuni* infection in broilers are reported after consumption of 10⁹ CFU/kg of *S. cerevisiae boulardii* CNCM I-1079 (31). It also suppressed *Salmonella* colonization in the caeca of broilers, and intestinal properties were improved in poultry fed 2.5 g yeast culture/kg of feed (35). Produced metabolites have the capacity to suppress pathogenic flora while boosting commensal bacteria (24). Recent research suggests that feeding *S. boulardii* CNCM I-1079 to calves during thermal neutral and heat stress periods increased the population of fecal yeast (26).

There are several hypothesized ways by which *S. boulardii* inhibits infections, including competition for resources, competition for colonization sites on the intestinal epithelium, generation of toxic substances, including volatile fatty acids and bacteriocins, and immune system modulation. One, more than one, or all of these processes may be present in the inhibition process in a balanced manner (36).

The function of *S. boulardii* as an antibiotic alternative. To prevent illnesses and increase productivity, antibiotics are added to livestock and poultry feed at sub-therapeutic levels. Howeever, microbial resistance, and antibiotic residues in meat and eggs are new problems in this context (37). So, use of antibiotics as growth promoters has been forbidden in the European Union since 2006 while dietary probiotics, such as *S. cerevisiae* and *S. boulardii*, have been employed as immunomodulators and antibiotic substitutes (36).

Mode of action of *S. boulardii*. Determining the mechanisms of microbial colonization within the digestive system is critical (38). *S. boulardii* possess a few different mechanisms as a therapeutic probiotic, which are summarized in Fig. 2.

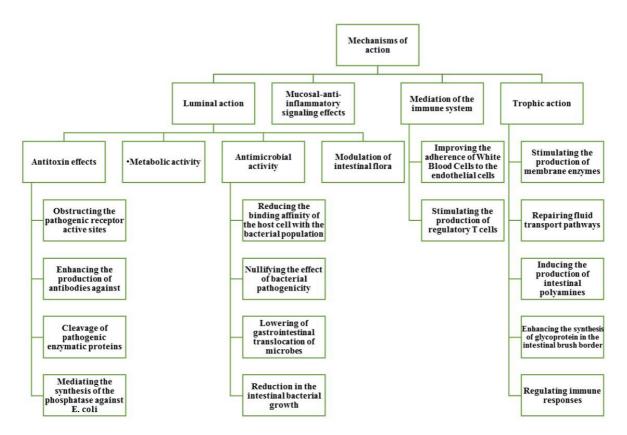


Fig. 2. Different types of Saccharomyces boulardii's mechanisms of action as a therapeutic probiotic

S. boulardii exerts its beneficial effects through bio-regulatory functions, such as microbial antagonism and immune stimulation (1). Rajput et al. demonstrated that S. boulardii regulates intestinal morphological ultrastructure, however, the precise mechanism remains unknown. During its intestinal transit, it also secretes polyamines, primarily spermine and spermidine, which impact protein synthesis (5).

S. boulardii is one of the few yeasts that can develop quickly in anaerobic environments by consumption of oxygen in ruminal fluid (39). Nutritional rivalry and delivery of nutrients, which cause stimulation of the growth of rumen bacteria and anaerobic fungi, are other possibilities for the in vivo mode of action (40).

S. boulardii exhibited antibacterial activity for the following reasons: (i) synthesis of protease, an extracellular enzyme (ii) enzyme-based proteins secretion, (iii) SO₂ gas and toxins excretion, which can inhibit the efficacy of Clostridium difficile toxins, (iv) hydrophobicity of cell surface, which is responsible for the attachment of patient's intestinal lining to S. boulardii (41). Also, S. boulardii in feed has been shown in studies to decrease the gut pathogens population

by inhibiting the destructive microbes' growth. This yeast facilitates digestion through enzymatic action and creates lactic acid (42). It is possible that *S. boulardii*'s beneficial effects on intestinal detoxification, modulation of intestinal mucin dynamics, immunomodulation, and stimulation of secretory IgA secretion in the gut could explain *S. boulardii*'s ability to reduce pathogens such as *Salmonella* (43).

Mannose residues and cell wall proteins of S. boulardii are responsible for attachment to gut receptors, lowering the likelihood of pathogenic bacteria attaching to active sites. If pathogen has already adhered, probiotic therapy may greatly increase the expression of exogenous sugars, which can hinder pathogenic microbe attachment to the gut mucosal layers (44). In poultry, it has been proposed that mannan-oligosaccharides in S. boulardii cell walls agglutinate to the pathogenic bacteria's Type-1 fimbriae structures, preventing their colonization of the gut lumen (34). Since the animal body cannot produce the α-glucans component of the yeast cell wall, and they are not a part of its body, pattern recognition receptors in the lumen recognize them as pathogen-associated molecular patterns. The innate immune system's natural killer

cells, macrophages, and neutrophils are involved in this response (45).

Many positive impacts of yeasts are proposed to stimulate immune modulation due to β -D-glucan of the yeast cell walls (46). According to Shen et al. (47), yeast cells' ability to offer these advantages is due to the nature of the cells themselves. The effects of yeast cells are assumed to be caused by specific sugar types, particularly α -D-mannans and β -D-glucans, which make up significant portions of the cell walls of *S. boulardii*.

Various strains of *S. boulardii* have been utilized to improve nutrition, health, and production qualities in a wide range of livestock and poultry animal species, with some studies revealing quantifiable improvements and others showing no impact (48).

Effect of S. boulardii on production parameters.

Several studies on the impact of S. boulardii on ruminant performance parameters have been published. There is research on the efficacy of this yeast on milk production, which revealed that S. boulardii increased milk yield and that yeast supplementation had no impact on milk composition (49). Additionally, the growing benefit of including S. boulardii in ruminant feed (such as increased heart girth, live weight, height at withers, and cut-out yields) has been reported (42). According to Shen et al. (47), adding 0.5% yeast improves nursery pig production traits, which supports the findings of Gao et al. (35), who discovered that adding yeast improves daily gain in pigs. The observed increase in litter and pig weight gains in yeast could be attributed to a variety of factors, including enhanced sow milk production and milk quality, as well as improved nutrient digestibility (49). Parada et al. (50) reported the impact of probiotic S. boulardii RC009 and Pediococcus pentosaceus RC007 on pig meat composition and increased essential omega-3 fatty acids after slaughte.

Experiments have revealed disparities in performance after feeding *S. boulardii* to calves both before and after weaning. Some studies observed much higher pre-weaning consumption, while others found no significant differences. Others reported that *S. boulardii* has a favorable effect on dry matter intake just after weaning. Dry matter intake could be influenced by a variety of factors, such as the composition of the diet or the calves' physiological status, dosage, and feeding technique (24). The average daily gain is proportional to the amount of dry matter consumed.

Higher dry matter intake is likely to result in higher average daily growth. However, the average daily increase was not statistically different, corresponding to the lack of changes in dry matter intake in most studies.

Numerous studies have examined the impact of *S. boulardii* on a variety of chicken performance factors, such as immunological function, body weight gain, enhanced feed intake, and feed efficiency in broilers (36). Incorporating this probiotic in poultry processing suppressed pathogens and led health benefits (51). The findings of some researchers reported better weight gain and meat quality improvement in broilers fed yeast-based diets (52). Also, previous studies have shown that *S. boulardii* culture can improve the feed conversion ratio in laying chickens. The addition of yeast to layer feed increased egg and yolk weight, shell weight and thickness, and decreased yolk cholesterol (53).

According to a study by Magnoli et al. (54), the whole yeast and its derivatives could increase the meat yield of broilers through their impact on the numbers of white blood cells, lymphocytes, and monocytes, which may be linked to a reduction in the stress induced by *Salmonella* lipopolysaccharide in broilers. Meat-typed chickens fed a diet containing *S. boulardii* had higher protein and fiber digestibility (42). The observed enhancement in fiber and protein digestion could be attributed to the ability of yeast to enhance useful microbes in the gastrointestinal tract.

Dietary inclusion of *S. boulardii***-derived post-biotic.** The metabolism of host-indigestible feed elements is an important and well-understood activity of the gut microbiota. This capability of the microbiome significantly enhances the host's energy consumption from feed. The gut microbiota has impact on host's signal transduction and often act as regulators of host response (55). Postbiotic byproducts include bacteriocins, short-chain fatty acids, proteins, and functional peptides (56). In other words, postbiotics are generally viewed as preparations made from the bioactive substances generated in regulated fermentation processes by specific microorganisms, such as yeasts, that ultimately benefit the health of the target host as a newer category of products (57).

Several metabolites associated with *S. boulardii* have been identified as potential postbiotics, including polyamines, organic acids, enzymes, vitamins, and phenolic compounds. In terms of intracellular

components, biofilms, mannoproteins, B-glucans, and chitin have been noted for their technological applications and health benefits (58). Among the various cell components, polysaccharides that constitute the cell wall structure have received the most attention from researchers. The polysaccharide composition of S. boulardii cell walls exhibits variability depending on the growth medium and strains. However, extant literature reports that the structure is composed of β-glucans (65%), mannoproteins (35-40%), and chitin (2%) (59). Among the most extensively studied yeast postbiotics is beta-glucan, a polysaccharide present in the cell walls of yeast. Research has demonstrated that beta-glucans can enhance immune responses in animals by stimulating macrophages, promoting cytokine production, and improving gut barrier function (60). Moreover, mannoproteins, derived from yeast, have exhibited prebiotic properties by selectively fostering the proliferation of beneficial gut microbiota, such as Lactobacilli and Bifidobacteria.

The incorporation of yeast-derived postbiotics into animal feed has emerged as a promising strategy to enhance animal health, optimize performance, and minimize reliance on antibiotics. The utilization of yeast postbiotics has yielded favorable outcomes in the domains of poultry, swine, and ruminant production, as evidenced by the observed enhancement in growth performance, feed efficiency, intestinal morphology, and immune function (61). Furthermore, the natural origin of yeast postbiotics aligns with consumer demand for sustainable and environmentally friendly animal production practices. Most experts believe that yeast-derived products may be more effective when animals face illness or stressful conditions (24). Recent research revealed the role of postbiotics in the immune system (62). Abd El-Ghany et al. (63) showed that combination of feed and postbiotic treatment has promising results in immune status of broiler chickens (64). Also, the postbiotics of Saccharomyces cultures definitely demonstrated potential successful effects in terms of increasing the animal's development rate as well as decreasing intestinal pathogen colonization (65).

In a review of the literature on supplements for food-producing animals, Broadway et al. (66) noted that the components of the *S. boulardii* cell wall interact with immune cells directly, bind bacteria to stop infections from colonizing, may have antioxidant and anticancer activities, and can improve growth performance and change metabolism. The yeast cell walls

of S. boulardii contain mannan oligosaccharides, and they are a natural feed additive that encourage the development of useful bacteria in the gut while discouraging the growth of harmful bacteria. The effect of the yeast cell wall (0.1% and 0.2%) on broiler growth has been reported (42). Johnson et al. (62) reported that in the presence of pathogenic C. perfringens, water treatment with postbiotic metabolites of S. boulardii, Lactobacillus reuteri, and L. acidophilus activated immunological responses. In an in vitro model of the intestinal mucosa, a combination of heat-inactivated probiotic strains, including S. boulardii, L. acidophilus, L. casei, L. plantarum, Bifidobacterium bifidum, L. rhamnosus, and Streptococcus thermophilus protected the midgut from becoming infected with E. coli by lowering pathogenic penetration and paracellular permeability into the intestinal epithelium and returning tight linkage activity (67).

Table 1 shows some of the recent studies, in which the impact of supplementation of poultry and live-stock diets with *S. boulardii* was investigated (68-75). Anyway, besides all the benefits of *S. boulardii* and its metabolites as a single or coculture system (76-79), *S. boulardii* has the potential to open new windows for human health by improving feed and food safety.

The Antimicrobial resistance crisis in animal production. The extensive use of antibiotics in livestock has created a significant public health challenge through the development of antimicrobial resistance. Since their introduction in the 1940s, antibiotics have been used not only for disease treatment but also as growth promoters in animal feed. The European Union's ban on antibiotic growth promoters in 2006 (Regulation EC No 1831/2003) and the growing consumer demand for antibiotic-free products have accelerated the search for effective alternatives, with probiotics emerging as a leading solution.

Research demonstrates numerous benefits of probiotic supplementation in poultry by improving growth performance, pathogen reduction (*Lactobacillus* strains reduce *Salmonella* contamination in chickens, *Pediococcus pentosaceus* produces pediocin that inhibits *Clostridium perfringens*, *Bacillus subtilis* limits *Campylobacter* colonization), as well as gut health and even meat and egg quality. In cattle and other ruminants, probiotics reduce shedding of *E. coli* O157:H7, improve feed efficiency and nutrient digestibility, and enhance immune responses against respiratory pathogens like *Mannheimia haemolytica*.

Table 1. Impact of supplementation of poultry and livestock diets with live Saccharomyces boulardii

Saccharomyces boulardii doses $1.0 \times 10^9 \text{ CFU/kg feed}$ $1.0 \times 10^{12} \text{ CFU/T feed}$ $1.0 \times 10^8 \text{ CFU per head}$	Animal species Pigs Broiler chicken	Condition 1650 pigs Two hundred and four 1-day-old male broiler chickens	Impact Increasing lean percentage and reducing the eicosanoic contents in meat Enhancing productivity parameters, economically significant careass weight, and histomorphometric	References (50)
1.0×10^9 CFU/kg feed 1.0×10^{12} CFU/T feed 1.0×10^8 CFU per head	Pigs Broiler chicken	1650 pigs Two hundred and four 1-day-old male broiler chickens	Increasing lean percentage and reducing the eicosanoic contents in meat Enhancing productivity parameters, economically significant careass weight, and histomorphometric	(50)
1.0×10^{12} CFU/T feed 1.0×10^{8} CFU per head	Broiler chicken	Two hundred and four 1-day-old male broiler chickens	Enhancing productivity parameters, economically significant care ass weight and histomorphometric	(54)
1.0×10^8 CFU per head			chounts with the case of interesting	(34)
	Dairy cows	33 Primiparous and 35	Production of greater milk yield as well as more	(68)
3 g/day/calf for 21 days	Dairy calves	48 newbom Holstein dairy calves	Reducing the incidence of diarrhea, improving serum immunoglobulins concentrations and modulating rectal microbiots	(69)
1.0×10^8 CFU/kg of feed for 28 d	Weaned piglets	One hundred and eight weaned piglets	Improvement in feed conversion ratio, reduction in diarrhea rate, enhanced antioxidant activity, anti-inflammatory responses, improved intestinal	(22)
$1.0\times10^8\text{CFU/kg}$ of feed for 42 d	Broiler chickens	750 one-day-old male broiler chickens (Ross 308)	Improvement in growth rate and bone mineralization not effective for feed efficiency	(70)
1.0×10^9 CFU/d for 49 days 2.0×10^{10} CFU/g for 21 d	Veal calves Holstein calves	84 animals 28 days of age, body weight of 45.6 kg	Reducing diarrhea and improvement of fecal scores Amelioration of the negative impact of heat stress; reduction in rectal temperature and heart rate; alleviation of diarrhea	(71) (26)
1.0×10^{9} CFU/kg of feed for 21 d	Broilers	156-day-old male Ross 308 chicks	Modulation of the intestinal ecosystem, higher abundance of beneficial microorganisms and modification of the intestinal mucosa architecture, improvement of the hotilers' growth performance	(31)
1.0×10^8 CFU/g of feed	Broiler chicken	600 chicks (Ross 308)	Significantly high concentration of blood protein and glucose, significantly low aspirale aminoransferase	(33)
1.0×10^{8} CFU/kg of feed for 72 d	Broilers	Three hundred 1-day-old Sanhuang broilers	Bacteroidetes, Proteobacteria, and Verrucomicrobia observed at a much higher abundance in the jejunum and ileum	(72)
Microguard at 50 g/ton for 42 days	Broilers	Six hundred one-day-old male Ross 308 broilers	Enhancing immune system responses and inducing beneficial modulations in the caecal microflora	(73)
1.0×10^8 CFU/kg of feed for 72 d	Broiler chickens	200 one-day-old Sanhuang broilers	Higher adenosine triphosphatase, gamma-glutamyl transpeptidase, lipase, and trypsin activities; no significant improvement in amylase activities in the duodenum	(7)
1.0×10^{9} CFU/kg of feed for 35 d	Broilers	430 one-day-old male Cobb broilers vaccinated for Marek, Infectious Bronchitis, and Newcastle Disease	Improvement in growth performance; reduction of Salmonella presence	(43)
0.05 lb. per ton of feed	Broiler chickens	From day eighteen to day thirty-six of the flock	No significant impact on production characteristics	(28)
1.0×10^8 CFU/kg of feed for 72 d	Broiler chickens	Three hundred 1-day-old Sanhuang broilers	Significant improvement in live BW, increase intestinal villus height, width, and number of coblet cells	(5)
2.6×10^8 CFU/g for 35 d	Weaned pigs	96 weaned piglets (21-24 days of age, 7.4 ± 0.6 kg body weight)	Improved average daily gain and feed conversion ratio, higher apparent total tract digestibility of crude protein, crude fiber and organic matter.	(74)
1 g/d from 4 d of age until weaning	Calves	24 Holstein calves	Modified ruminal fermentation, no impact on	(27)
1.0×10^7 CFU/g of feed for 47 d	Broiler chicken	Ninety 1-d-old female chicks (Ross-308)	Improvement of feed efficiency	(75)

Probiotic use in fish farming shows reduced mortality from bacterial infections (e.g., *Edwardsiella tarda* in tilapia), improved immune defenses in species like rainbow trout, better growth performance and survival rates (9, 11, 12, 21, 47, 71).

Probiotics as a solution to antimicrobial resistance. The transition from antibiotics to probiotics addresses AMR through several key mechanisms of reduced antibiotic use (by preventing infections and improving growth, probiotics decrease reliance on therapeutic antibiotics), pathogen control without resistance by multiple antimicrobial strategies (competitive exclusion, pH reduction, bacteriocins), restoration of microbial balance, and reducing environmental AMR pressure. While promising, probiotic use in animal nutrition faces several challenges, including strain-specific effects (e.g. Lactobacillus acidophilus improves egg production while L. plantarum is more effective against Salmonella), dosage optimization for each animal species and production system, stability issues, regulatory frameworks, and their synergy with essential oils.

Current research on probiotics in livestock primarily investigated short-term effects; however, long-term studies are crucial to evaluate sustained benefits. Key areas of focus include understanding the molecular mechanisms of probiotic interactions with animal physiology, exploring synergistic effects between probiotics, prebiotics (synbiotics), and other natural additives. Further research should concentrate on utilizing advanced molecular techniques to identify optimal probiotic strains, elucidate their modes of action, and develop customized probiotic formulations tailored to specific livestock breeds and production systems (80).

CONCLUSION

The application of probiotics in livestock and poultry feed represents a paradigm shift in sustainable animal production. By enhancing animal health through multiple mechanisms from competitive exclusion to immune modulation, probiotics offer a viable solution to reduce dependence on antibiotics while maintaining productivity. Their ability to control pathogens without promoting antimicrobial resistance addresses one of the most pressing challenges in modern agriculture. As research continues to refine probiotic formulations and application methods,

their role in animal nutrition is poised to expand. The integration of probiotics into animal feeding strategies not only benefits animal health and welfare, but also contributes to broader public health goals by mitigating the global AMR crisis. With proper strain selection, dosage, and management, probiotics can help meet the growing demand for safe, sustainable animal protein in the 21st century.

It has the potential to improve animal health and performance, enhance digestibility, and reduce pathogenic microbes. S. boulardii shows promise as a probiotic for poultry. Research indicates it can improve gut integrity, prevent bacterial translocation, and stimulate the immune system in chicks. Moreover, both live and heat-killed forms of S. boulardii have demonstrated effectiveness. This offers a safe alternative to in-feed medications. S. boulardii plays its role in domestic animals through one of these mechanisms or their combinations: (i) decreasing the pathogens through competing for available sites, (ii) lowering the pH of the gastrointestinal tract via producing a wide range of organic acids, (iii) improving nutrient uptake and feed intake via direct nutritional influence, and (iv) decreasing bacterial enzymatic activity. More investigations could focus on clarifying the exact mechanism of action of S. boulardii in the domestic animal gut.

However, the inconsistency in most of the results as reported by researchers could be related to these factors: S. boulardii dosage, the count of live cells, the impact of age and physiological status of the host animal, geographical differences, environmental factors, the composition of the diet, the mode of administration, and production techniques. Also, the variability in experimental designs may contribute to the differences in reported results. Further research is needed to elucidate the exact factors affecting the differences in experimental results. Also, more research is required to optimize dosage, explore its combinations with other probiotics, and expand research to various livestock species to determine its full potential and application. Unsolved problems are still its optimal dosages for poultry, its comparison to other probiotics, and safety concerns.

ACKNOWLEDGEMENTS

The authors have no further acknowledgments to declare. The manuscript was prepared solely by the authors, whose contributions are declared herein.

REFERENCES

- Elghandour MMY, Tan ZL, Abu Hafsa SH, Adegbeye MJ, Greiner R, Ugbogu EA, et al. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review. J Appl Microbiol 2020; 128: 658-674.
- 2. Lambo MT, Chang X, Liu D. The recent trend in the use of multistrain probiotics in livestock production: An overview. *Animals (Basel)* 2021; 11: 2805.
- 3. Chuka E, Ugwu CC (2015). Yeast (*Saccharomyces cerevisiae*) as a probiotic of choice for broiler production. In: Beneficial Microorganisms in agriculture, aquaculture and other Areas. Microbiology Monographs; Springer: Berlin, Germany. Pp.59-79.
- Ayana GU, Kamutambuko R. Probiotics in disease management for sustainable poultry production. Adv Gut Microbiome Res 2024; 2024: 4326438.
- Rajput IR, Li LY, Xin X, Wu BB, Juan ZL, Cui ZW, et al. Effect of *Saccharomyces boulardii* and *Bacillus subtilis* B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. *Poult Sci* 2013; 92: 956–965.
- 6. Moslehi-Jenabian S, Pedersen LL, Jespersen L. Beneficial effects of probiotic and food borne yeasts on human health. *Nutrients* 2010; 2: 449-473.
- Sun Y, Rajput IR, Arain MA, Li Y, Baloch DM. Oral administration of *Saccharomyces boulardii* alters duodenal morphology, enzymatic activity, and cytokine production response in broiler chickens. *Anim Sci J* 2017; 88: 1204-1211.
- 8. Naseeb S, James SA, Alsammar H, Michaels CJ, Gini B, Nueno-Palop C, et al. *Saccharomyces jurei* sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. *Int J Syst Evol Microbiol* 2017; 67: 2046-2052.
- Garcia-Mazcorro JF, Ishaq SL, Rodriguez-Herrera MV, Garcia-Hernandez CA, Kawas JR, Nagaraja TG. Review: Are there indigenous *Saccharomyces* in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. *Animal* 2020; 14: 22-30.
- McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16: 2202–2222.
- Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, et al. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2023; 63: 457-485.
- 12. Abid R, Waseem H, Ali J, Ghazanfar S, Muhammad Ali G, Elasbali AM, et al. Probiotic yeast *Saccharomyces*: Back to nature to improve human health. *J Fungi*

- (Basel) 2022; 8: 444.
- 13. Drozdova PB, Tarasov OV, Matveenko AG, Radchenko EA, Sopova JV, Polev DE, et al. Genome sequencing and comparative analysis of *Saccharomyces cerevisiae* strains of the Peterhof genetic collection. *PloS One* 2016; 11(5): e0154722.
- 14. Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, et al. Genotypic and physiological characterization of *Saccharomyces boulardii*, the probiotic strain of *Saccharomyces cerevisiae*. Appl Environ Microbiol 2007; 73: 2458-2467.
- 15. Redweik GAJ, Jochum J, Mellata M. Live bacterial prophylactics in modern poultry. *Front Vet Sci* 2020; 7: 592312.
- Srednicka P, Juszczuk-Kubiak E, Wójcicki M, Akimowicz M, Roszko M. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food Chem Toxicol 2021; 153: 112306.
- 17. Pourabedin M, Xu Z, Baurhoo B, Chevaux E, Zhao X. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. *Can J Microbiol* 2014; 60: 255-266.
- 18. Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, et al. Effects of different forms of yeast *Saccharomyces cerevisiae* on growth performance, intestinal development, and systemic immunity in earlyweaned piglets. *J Anim Sci Biotechnol* 2015; 6: 47.
- 19. Vohra A, Syal P, Madan A. Probiotic yeasts in livestock sector. *Anim Feed Sci Technol* 2016; 219: 31-47.
- Zaworski EM, Shriver-munsch CM, Fadden NA, Sanchez WK, Yoon I, Bobe G. Effects of feeding various dosages of *Saccharomyces cerevisiae* fermentation product in transition dairy cows. *J Dairy Sci* 2014; 97: 3081-3098.
- 21. Magalhães VJA, Susca F, Lima FS, Branco AF, Yoon I, Santos JE. Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. *J Dairy Sci* 2008; 91: 1497-1509.
- 22. Zhang W, Bao C, Wang J, Zang J, Cao Y. Administration of *Saccharomyces boulardii* mafic-1701 improves feed conversion ratio, promotes antioxidant capacity, alleviates intestinal inflammation and modulates gut microbiota in weaned piglets. *J Anim Sci Biotechnol* 2020; 11: 112.
- 23. Wang C, Li W, Wang H, Ma Y, Zhao X, Zhang X, et al. *Saccharomyces boulardii* alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-alpha and IL-6 levels and functions and by rebalancing intestinal microbiota. *BMC Microbiol* 2019; 19: 246.
- 24. Alugongo GM, Xiao J, Wu Z, Li S, Wang Y, Cao Z. Review: Utilization of yeast of *Saccharomyces cerevisiae* origin in artificially raised calves. *J Anim Sci Biotechnol* 2017; 8: 34.

- Chaudhary SS, Singh VK, Upadhyay RC, Puri G, Odedara AB, Patel PA. Evaluation of physiological and biochemical responses in different seasons in Surti buffaloes. *Vet World* 2015; 8: 727-731.
- 26. Lee JS, Kacem N, Kim WS, Peng DQ, Kim YJ, Joung YG, et al. Effect of *Saccharomyces boulardii* supplementation on performance and physiological traits of Holstein calves under heat stress conditions. *Animals* (*Basel*) 2019; 9: 510.
- 27. Pinos-Rodríguez J, Robinson PH, Ortega ME, Berry SL, Mendoza G, Barcena R. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae 1077 or Saccharomyces boulardii 1079. Anim Feed Sci Technol 2008; 140: 223-232.
- 28. Philpot CS (2015). Saccharomyces boulardii as an enteric health promoter in broiler chickens. Poultry science undergraduate honors theses retrieved from https://scholarworks.uark.edu/poscuht/2
- Javadi A, Mirzaei H, Safarmashaei S, Vahdatpour S. Effects of probiotic (live and inactive *Saccharomyces cerevisiae*) on meat and intestinal microbial properties of Japanese quails. *Afr J Biotechnol* 2012; 11: 12083-12087.
- 30. Higgins SE, Higgins JP, Wolfenden AD, Henderson SN, Torres-Rodriguez A, Tellez G, et al. Evaluation of a *Lactobacillus*-based probiotic culture for the reduction of *Salmonella enteritidis* in neonatal broiler chicks. *Poult Sci* 2008; 87: 27-31.
- 31. Massacci FR, Lovito C, Tofani S, Tentellini M, Genovese DA, De Leo AAP, et al. Dietary *Saccharomyces cerevisiae boulardii* CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a *Campylobacter jejuni* infection. *Microorganisms* 2019; 7: 596.
- 32. Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, £ukaszewicz M. Capric acid secreted by *S. boulardii* inhibits *C. albicans* filamentous growth, adhesion and biofilm formation. *PLoS One* 2010; 5(8): e12050.
- 33. Abudabos AM, Alhouri HAA, Alhidary IA, Nassan MA, Swelum AA. Ameliorative effect of *Bacillus subtilis*, *Saccharomyces boulardii*, oregano, and calcium montmorillonite on growth, intestinal histology, and blood metabolites on *Salmonella*-infected broiler chicken. *Environ Sci Pollut Res Int* 2019; 26: 16274-16278.
- 34. Spring P, Wenk C, Dawson KA, Newman KE. The effects of dietary mannan oligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of *Salmonella* challenge broiler chicks. *Poult Sci* 2000; 79: 205-211.
- 35. Gao F, Jiang Y, Zhou GH, Han ZK. The effects of xylanase supplementation on performance, characteristics of the gastrointestinal tract, blood parameters and gut microflora in broilers fed on wheat-based diets.

- Anim Feed Sci Technol 2008; 142: 173-184.
- Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. *Poult Sci* 2018; 97: 3807-3815.
- 37. Ogbuewu IP, Mabelebele M, Sebola NA, Mbajiorgu C. Bacillus probiotics as alternatives to in-feed antibiotics and its influence on growth, serum chemistry, antioxidant status, intestinal histomorphology, and lesion scores in disease-challenged broiler chickens. Front Vet Sci 2022; 9: 876725.
- 38. Walter J, Maldonado-Gomez MX, Martinez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. *Curr Opin Biotechnol* 2018; 49: 129-139.
- Chae J-B, Schoofs AD, McGill JL. Beneficial effects of Saccharomyces cerevisiae fermentation postbiotic products on calf and cow health and plausible mechanisms of action. Front Anim Sci 2024; 5: 10.3389/ fanim.2024.1491970.
- 40. Fonty G, Chaucheyras-Durand F. Effects and modes of action of live yeasts in the rumen. *Biologia* 2006; 61: 741-750.
- 41. Capitán-Cañadas F (2014). New insights into the mechanisms of prebiotics and microbiota on intestinal defense. Universidad de Granada; Granada, Spain.
- 42. Ogbuewu IP, Okoro VM, Mbajiorgu EF, Mbajiorgu CA. Yeast (*Saccharomyces cerevisiae*) and its effect on production indices of livestock and poultry—a review. *Comp Clin Pathol* 2019; 28: 669-677.
- 43. Mountzouris KC, Dalaka E, Palamidi I, Paraskeuas V, Demey V, Theodoropoulos G, et al. Evaluation of yeast dietary supplementation in broilers challenged or not with *Salmonella* on growth performance, cecal microbiota composition and *Salmonella* in ceca, cloacae and carcass skin. *Poult Sci* 2015; 94: 2445-2455.
- 44. Roussel C, Sivignon A, De Vallee A, Garrait G, Denis S, Tsilia V, et al. Anti-infectious properties of the probiotic *Saccharomyces cerevisiae* CNCM I-3856 on enterotoxigenic *E. coli* (ETEC) strain H10407. *Appl Microbiol Biotechnol* 2018; 102: 6175-6189.
- 45. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. *Physiol Behav* 2008; 94: 276-284.
- 46. Kim JS, Hosseindoust A, Lee SH, Choi YH, Kim MJ, Lee JH, et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and clostridium. *Animal* 2017; 11: 45-53.
- 47. Shen YB, Piao XS, Kim SW, Wang L, Liu P, Yoon I, et al. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. *J Anim Sci* 2009; 87: 2614-2624.
- 48. Alugongo GM, Xiao JX, Chung YH, Dong SZ, Li SL, Yoon I, et al. Effects of *Saccharomyces cerevisiae* fer-

- mentation products on dairy calves: performance and health. *J Dairy Sci* 2017; 100: 1189-1199.
- 49. Ogbuewu IP, Nwogu CM, Iwuji TC (2017). Meta-analysis of the efficacy of yeast in improving milk production in lactating dairy cows. Proc 42nd Ann. Conf. Nigerian Society for Animal Prod (NSAP) held at Multipurpose Hall, Landmark University, Omu-Aran, Kwara State Nigeria, March, pp. 72-75.
- 50. Parada J, Magnoli A, Alonso V, Diaz Vergara L, Corti Isgro M, Posse JJT, et al. Inclusion of Saccharomyces cerevisiae var. boulardii RC009 and Pediococcus pentosaceus RC007 as a probiotic additive in pigs' postweaning diets and its effect on meat composition, carcass characteristics, and fatty acids profile after slaughter. Vet Med Int 2024; 2024: 6658120.
- Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, et al. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. *Poult Sci* 2024; 103: 103287.
- 52. Swamy MN, Upendra HA. Growth performance, crude protein, ether extract and total ash in the breast muscle of broiler chickens supplemented with probiotics. *Int J Sci Environ Technol* 2013; 2: 1000-1007.
- 53. Swain BK, Naik PK, Chakurkar EB, Singh NP. Effect of probiotics and yeast supplementation on performance, egg quality characteristics and economics of production in Vanaraja layers. *Indian J Poult Sci* 2011; 46: 313-315.
- 54. Magnoli AP, Parada J, Luna María J, Corti M, Escobar FM, Fernández C, et al. Impact of probiotic *Saccharomyces cerevisiae var. boulardii* RC009 alone and in combination with a phytase in broiler chickens fed with antibiotic-free diets. *Agrobiol Records* 2024; 16: 1-10.
- 55. Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-modulated metabolites at the interface of host immunity. *J Immunol* 2017; 198: 572-580.
- Cicenia A, Scirocco A, Carabotti M, Pallotta L, Marignani M, Severi C. Postbiotic activities of Lactobacilli-derived factors. *J Clin Gastroenterol* 2014; 48 Suppl 1: S18-S22.
- 57. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. *Nat Rev Gastroenterol Hepatol* 2021; 18: 649-667.
- 58. Franco W. Postbiotics and parabiotics derived from bacteria and yeast: current trends and future perspectives. *CyTA J Food* 2024; 22: 2425838.
- Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IMPLVO. Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. *J Food Compos Anal* 2016; 52: 44-51.
- 60. Tintoré M, Cuñé J, Vetvicka V, Lecea CD. Anti-inflammatory effects, protection of gut barrier integrity and

- stimulation of phago-cytosis of postbiotic combination ABB C1. *Nutraceuticals* 2023; 3: 109-118.
- 61. Fathima S, Shanmugasundaram R, Sifri M, Selvaraj R. Yeasts and yeast-based products in poultry nutrition. *J Appl Poult Res* 2023; 32: 100345.
- 62. Johnson CN, Kogut MH, Genovese K, He H, Kazemi S, Arsenault RJ. Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. *Microorganisms* 2019; 7: 268.
- 63. Abd El-Ghany WA, Abdel-Latif MA, Hosny F, Alatfeehy NM, Noreldin AE, Quesnell RR, et al. Comparative efficacy of postbiotic, probiotic, and antibiotic against necrotic enteritis in broiler chickens. *Poult Sci* 2022; 101: 101988
- 64. Chaney E, Miller EA, Firman J, Binnebose A, Kuttappan V, Johnson TJ. Effects of a postbiotic, with and without a saponin-based product, on turkey performance. *Poult Sci* 2023; 102: 102607.
- 65. Abd El-Ghany WA. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. *Open Vet J* 2020; 10: 323-330.
- 66. Broadway PR, Carroll JA, Sanchez NCB. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. *Microorganisms* 2015; 3: 417-427.
- 67. Servi B, Ranzini F. Protective efficacy of antidiarrheal agents in a permeability model of *Escherichia coli*-infected CacoGoblet® cells. *Future Microbiol* 2017; 12: 1449-1455.
- 68. Hiltz RL, Steelreath MR, Degenshein-Woods MN, Hung HC, Aguilar A, Nielsen H, et al. Effects of *Saccharomyces cerevisiae boulardii* (CNCM I-1079) on feed intake, blood parameters, and production during early lactation. *J Dairy Sci* 2023; 106: 187-201.
- 69. Lu Q, Niu J, Wu Y, Zhang W. Effects of Saccharomyces cerevisiae var. boulardii on growth, incidence of diarrhea, serum immunoglobulins, and rectal microbiota of suckling dairy calves. Livest Sci 2022; 258: 104875.
- Nari N, Ghasemi H. Growth performance, nutrient digestibility, bone mineralization, and hormone profile in broilers fed with phosphorus-deficient diets supplemented with butyric acid and *Saccharomyces boular*dii. Poult Sci 2019; 99: 926-935.
- Villot C, Ma T, Renaud DL, Ghaffari MH, Gibson DJ, Skidmore A, et al. *Saccharomyces cerevisiae boulardii* CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. *J Dairy Sci* 2019; 102: 7011-7025.
- 72. Qin C, Gong L, Zhang X, Wang Y, Wang Y, Wang B, et al. Effect of *Saccharomyces boulardii* and *Bacillus subtilis* B10 on gut microbiota modulation in broilers. *Anim Nutr* 2018; 4: 358-366.

ALALEH ZOGHI ET AL.

- 73. Manafi M, Hedayati M, Mirzaie S. Probiotic *Bacillus* species and *Saccharomyces boulardii* improve performance, gut histology and immunity in broiler chickens. *South Afr J Anim Sci* 2018; 48: 379-389.
- 74. Giang HH, Viet TQ, Lindberg JE, Ogle B. Effects of microbial enzymes and a complex of lactic acid bacteria and *Saccharomyces boulardii* on growth performance and total tract digestibility in weaned pigs. *Livest Res Rural Dev* 2010; 22: 179.
- 75. Gil de los santos JR, Storch OB, Gil-turnes C. *Bacillus cereus var toyoii* and *Saccharomyces boulardii* increased feed efficiency in broilers infected with *Salmonella enteritidis*. *Br Poult Sci* 2005; 46: 494-497.
- 76. Hashemi N, Shams F, Sharif E, Bakhshi Valilou M. Recent advances in engineered edible probiotic vaccines: Promising agents in the effectiveness of probiotics. Appl Food Biotechnol 2024; 11(2): e5.

- 77. Shaikh SS, Joshi C, Malek F, Malik A, Gandhi M. Food storage, processing and genetic stability studies of *Bacillus (Heyndrickxia) coagulans* BCP92 (MTCC 25460). *Appl Food Biotechnol* 2024; 11(1): e22.
- 78. Fateminasab F, Koushki M, Jafarian F, Mansouri V, Ahmadzadeh A, Amiri-Dashatan N, et al. Assessing efficacy of the microbial interventions in heavy metal decontamination of the environment and food production systems. *Appl Food Biotechnol* 2024; 11(2): e8.
- Yousefi L. Yeast Mannan: Structure, Extraction and Bioactivity. Appl Food Biotechnol 2023; 10: 155-164.
- 80. Sachdeva A, Tomar T, Malik T, Bains A, Karnwal A. Exploring probiotics as a sustainable alternative to antimicrobial growth promoters: mechanisms and benefits in animal health. *Front. Sustain. Food Syst* 2025; 8: 10.3389/fsufs.2024.1523678.