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ABSTRACT 

 
Background and Objectives: Increasing the rate of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneu- 

moniae has given rise to a major healthcare issue in clinical settings over the past few years. Treatment of these strains 

is hardly effective since the plasmid encoding ESBL may also carry other resistance genes including aminoglycosides. 

The current study aimed to evaluate the prevalence of ESBL-producing K. pneumoniae and investigate the coexistence of 

Cefoxitamase-Munich (bla ) with aminoglycoside-modifying enzyme (AME) genes, aac(3)IIa as well as aac(6′)Ib, in 

CTX‑M‑producing K. pneumoniae  isolated from patients in Bushehr province, Iran. 

Materials and Methods: A total of 212 K. pneumoniae isolates were collected and confirmed using polymerase chain re‑ 

action (PCR) of the malate dehydrogenase gene. Isolates were screened for production of ESBL. Phenotypic confirmatory 

test was performed using combined disk test. The genes encoding CTX-M groups and AME genes, aac(3)IIa and aac(6′)Ib, 

were investigated by PCR. 

Results: The ESBL phenotype was detected in 56 (26.4%) K. pneumoniae isolates. Moreover, 83.9% of ESBL-producing 

isolates carried the genes for CTX-M type β-lactamases, which were distributed into the two genetic groups of CTX-M-1 

(97.8%)- and CTX-M-2 (2.1%)-related enzymes. Notably, among K. pneumoniae isolates containing the bla  
CTX‑M 

gene, 

68.08% of isolates harbored AME genes. In addition, the coexistence of bla 

in 46.8% of CTX-M-producing K. pneumoniae isolates. 

 
CTX‑M 

with aac(3)-IIa and aac(6’)-Ib was observed 

Conclusion: This study provides evidence of a high prevalence of AME genes in CTX-M- producing K. pneumoniae iso‑ 

lates; therefore, in the initial empirical treatment of infections caused by ESBL-KP in regions with such antibiotic resistance 

patterns, aminoglycoside combination therapy should be undertaken carefully. 
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INTRODUCTION 

 
Cefotaximase-Munich (CTX-M)-producing  Kleb- 

siella pneumoniae which is becoming growingly 

widespread in clinical and nosocomial settings (1) 

poses a worldwide growing threat to public health 

(2). CTX-M-type enzymes are defined as a group 

of non-TEM and SHV class A extended-spectrum 

β-lactamases (ESBLs) with a prompt ability to spread 

amongst Gram-negative bacteria (1, 3). In the 1980s 

and 1990s, TEM-type and SHV-type ESBLs were 

dominant. Nevertheless, a swift and massive spread 

of organisms producing CTX-M-type enzymes has 

come to light over the recent decade, resulting in 

CTX-M-  β-lactamases  becoming  the  most  preva‑ 

lent ESBLs throughout the world (4). The spread of 

CTX-Ms on such a large scale around the world has 

been referred to as the “CTX‑M pandemic” because 

of their rising description across the world (5). The 

phylogenic study demonstrates five main groups of 

acquired  CTX-M  enzymes  based  on  their  amino 

acid sequence similarities (6): the CTX-M-1 group 

(CTX-M-1, -3, -10, -11, -12, -15, -22, -23, -28, -29, 

-30, -32, -33, -36, -54 and UOE-1), the CTX-M-2 

group (CTX-M-2, -4, -6, -7, -20, -31, -44) (previ‑ 

ously  TOHO-1),  the  CTX-M-8  group  (CTX-M-8 

and  CTX-M-40),  the  CTX-M-9  group  (CTX-M-9, 

-13, -14, -16, -17, -18, -19, -24, -27, -45) (previously 

TOHO-2), (-46, -47, -48, -49, -50) and the CTX-M-25 

group (CTX-M, -26, -25, -39, -41) (7), among which 

the groups CTX‑M‑1, ‑M‑2 and ‑M‑9 seem to be the 

most widespread globally, while many of the other 

CTX-M ESBLs tend to be more limited in their dis‑ 

tribution (8). 

In terms of antibiotics, aminoglycosides are potent 

and broad‑spectrum antibiotics in the clinical setting 

(9). These agents are characteristically bactericidal 

and display synergy with other antimicrobials, most 

notably β-lactams (10). Since investigating carbapen‑ 

em-sparing regimens for infections caused by ESBL 

is medically required, we can observe a renewed in‑ 

terest in aminoglycosides as a potential alternative 

(11). Moreover, non-carbapenem antibiotic therapy 

has  demonstrated favorable  therapeutic  effects on 

UTIs because of ESBL-producing strains in adults 

as well as children. In such cases aminoglycosides 

can be a substitute to carbapenems and should be in‑ 

cluded in initial empirical treatment. In addition, the 

effectiveness of aminoglycoside combination therapy 

has also been observed in bacteremia caused by ES‑ 

BL-producing strains (12). 

Unfortunately, ESBL-producing organisms also 

confer cross-resistance to other families of antimi‑ 

crobial agents, including fluoroquinolones and ami‑ 

noglycosides (13). 

Enzymatic  inactivation  through  the  production 

of aminoglycoside-modifying enzymes (AMEs) is 

the main mechanism conferring resistance to ami‑ 

noglycosides in Enterobacteriaceae (9, 14). These 

enzymes are categorized into three families: amino‑ 

glycoside acetyltransferases (encoded by aac genes), 

aminoglycoside nucleotidyltransferases (encoded by 

ant genes), and aminoglycoside phosphoryltransfer‑ 

ases (encoded by aph genes) (9, 10, 13). 

The subclass AAC(3)-II, which is known for its 

resistance to gentamicin, netilmicin and tobramycin, 

includes three enzymes: AAC(3)-IIa, AAC(3)-IIb, 

and AAC(3)-IIc. Among them, 3–N-acetyltransfer‑ 

ases type IIa (aac(3)-IIa) is widely observed among 

the members of Enterobacteriaceae, including K. 

pneumoniae. Also, 6′-N-acetyltransferase type Ib 

(aac(6′)-Ib) is likely to be the most clinically relat‑ 

ed acetyltransferase responsible for the resistance to 

amikacin and other aminoglycosides found in En- 

terobacteriaceae (14). 

Regarding  the  point  that  CTX-M-  β-lactamases 

are the most prevalent ESBLs around the world, we 

focused our study on these β-lactamases. A large 

number of publications have provided in‑depth in‑ 

formation on microbiological, clinical, and epidemi‑ 

ological aspects of β-lactam resistance in ESBL-pro‑ 

ducing enterobacteria; however, there is a lack of 

sufficient data when considering   aminoglycosides. 

So we evaluated the prevalence of common amino‑ 

glycoside‑modifying genes, aac(3)-IIa and aac(6′)- 

Ib, conferring resistance to aminoglycosides  among 

CTX‑M‑producing K. pneumoniae isolates to predict 

the efficacy of β-lactam/aminoglycoside combination 

therapy. 
 

 
 
MATERIALS AND METHODS 

 
Strains and identification tests. This project was 

approved by the Ethical Committee of Bushehr Uni‑ 

versity of Medical Sciences with reference number 

IR.BPUMS.REC.1398.051. A total of 212 K. pneu- 

moniae were collected from eight hospitals and two 

medical diagnostic laboratories in Bushehr province, 

Iran, between December 2017 and November 2018. 
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The isolates were recovered from urine (n = 170), tra‑ 

cheal aspirate (n = 15), wound swab (n = 8), blood (n = 

8), burn (n = 3), sputum (n = 2), feces (n = 2), abscess 

(n = 2), Ascites fluid (n = 1) and Shaldon catheter (n 

= 1). All the strains were identified according to stan‑ 

dard microbiological procedures and stored at -70°C. 

Molecular identification of K. pneumoniae isolates 

conditions: initial denaturation at 95°C for 5 min fol‑ 

lowed by 35 cycles of denaturation at 95°C for 1 min, 

annealing at a specific temperature (for each prim‑ 

er) for 30 s as shown in Table 1, and elongation at 

72°C for 1 min. A final elongation step was extended 

to 5 min. Amplification reactions were prepared in 

a total volume of 25 μl including 12.5 μl Taq DNA 

was done to target the malate dehydrogenase (mdh) polymerase 2× Master Mix with 1.5 mM MgCl (Am‑ 

housekeeping gene by PCR (15). 

 
Antimicrobial susceptibility testing. Antimicro‑ 

bial susceptibility was determined using disk diffu‑ 

sion method according to the the Clinical and Labo‑ 

ratory Standards Institute (CLSI) guidelines (16). In 

doing so, the following antibiotic disks (MastGroup 

Ltd., Merseyside, United Kingdom) were used: ampi‑ 

cillin (25 μg), amoxicillin–clavulanic acid (20/10 μg), 

piperacillin-tazobactam  (100/10  μg),  cefoxitin  (30 

μg), ceftazidime (30 μg), cefotaxime (30 μg), ceftri‑ 

axone (30 μg), cefepime (30 μg), aztreonam (30 μg), 

amikacin (30 μg), gentamicin (10 μg), and tobramycin 

(30 μg). Likewise, MICs of amikacin and gentami‑ 

cin were determined using E-test (Liofilchem, Italy) 

on Muller-Hinton agar (Biolife, Italy). E. coli strains 

ATCC 25922 and ATCC 35218 were used as controls. 

 
Phenotypic ESBL detection. Reduced zones of 

inhibition around 3rd generation beta-lactam disks on 

Mueller-Hinton agar recommended ESBL production 

(17). Subsequently, ESBL production was confirmed 

by combined disk test (CDT) using disks of ceftazi‑ 

dime (30 µg) and cefotaxime (30 µg) with and with‑ 

out clavulanic acid (10 µg). A positive test result was 

defined as a ≥ 5 mm increase in the zone diameter 

compared with a disk without clavulanic acid. Also, 

E. coli ATCC 25922 (β lactamase negative) and K. 

peumoniae ATCC 700603 (ESBL positive) were used 

for controlling of ESBL detection. 

 
Detection of drug resistance genes. Detection of 

pliqon, Odense, Denmark), 1 μM forward primer, 1 

μM reverse primer, 9.5 μl nuclease-free water, and 1 

μl DNA template (50pg concentration). PCR products 

were electrophoresed on a 1.5% agarose gel at 80V, 

stained with safe dye (Yekta Tajhiz Azma, Iran), and 

finally visualized with a gel documentation system 

(Upland, CA, USA). To confirm the PCR results, 

randomly selected amplicons were purified and se‑ 

quenced by the Bioneer Company (Seoul, Korea). The 

nucleotides and deduced protein sequences alignment 

and analysis were also done online applying the ba‑ 

sic local alignment search tool (BLAST) program of 

the National Center for Biotechnology Information 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
 

 
 
RESULTS 

 
Antimicrobial susceptibilities of K. pneumoniae 

isolates. The combined disk test (CDT) confirmed 

that 56 (26.4%) of K. pneumoniae isolates were ESBL 

producers. The data on the activities of different an‑ 

timicrobial agents against ESBL-KP and non-ESBL 

K. pneumoniae isolates is summarized in Table 2. 

As expected, all isolates were resistant to ampicillin 

(100%). Generally, the resistance to the other tested 

antimicrobial agents was significantly higher in ES‑ 

BL-KP than in non-ESBL-KP (p < 0.0001) (Table 

2). The most effective antimicrobial agent against 

ESBL-KP was amikacin (78.3%). Among penicil‑ 

lin-β-lactamase  inhibitor  combinations,  piperacil‑ 

lin-tazobactam  was  slightly  more  active  (40.9%) 

bla  
CTX‑M 

genes and aminoglycoside resistance encod‑ than amoxicillin–clavulanicacid (23.1%) against ES‑ 

ing genes, aac(6’)-Ib and aac(3)-IIa, was carried out 

by PCR method using specific oligonucleotide prim‑ 

ers (Table 1). K. pneumoniae was cultured in Muller 

Hinton broth (Merck, Germany) at 37°C overnight 

and then the total DNA was extracted using an ex‑ 

traction kit (GeneAll, Korea) as recommended by the 

manufacturer. 

Amplification reactions were conducted in a T100 

Thermocycler (BIO-RAD, USA) under the following 

BL-KP isolates. 

As shown in Table 2, the resistance to (one or more) 

aminoglycosides  was  significantly  higher  in  ES‑ 

BL-KP than in non-ESBL-KP (p < 0.0001). Out of 

a total of 212 isolates, 38 isolates were resistant to 

tobramycin, 28 isolates were resistant to gentamicin 

and 11 isolates were resistant to amikacin, of which 

34 (89.4%), 27 (96.4%) and 11 (100%) isolates were 

ESBL producers, respectively. Notably, among ES‑ 
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Table 1. The sequences of primers and annealing temperatures used in PCR amplification of diverse CTX-M groups as well 

as aac(3)IIa and aac(6')Ib genes. 

 

Primer Sequence (5' to 3') Size 

(bp) 
Annealing 

temperature 
Gene Reference 

mdh F GCGTGGCGGTAGATCTAAGTCATA 364 55 mdh (15) 
mdh R TTCAGCTCCGCCACAAAGGTA     
CTX‑M‑1 F CCCATGGTTAAAAAATCACTG 891 57 bla 

CTX‑M‑1 (18) 
CTX‑M‑1 R CCGTTTCCGCTATTACAAAC     
CTX‑M‑2 F ATGATGACTCAGAGCATTCG 866 55 bla 

CTX‑M‑2 (19) 
CTX‑M‑2 R TGGGTTACGATTTTCGCC     
CTX‑M‑8 F ATGTTAATGACGACAGCCTGTG 689 57 bla 

CTX‑M‑8 (18) 
CTX‑M‑8 R CCGGTTTTATCCCCGACA     
CTX‑M‑9 F ATGGTGACAAAGAGAGTGCA 870 55 bla 

CTX‑M‑9 (19) 
CTX‑M‑9 R CCCTTCGGCGATGATTCTC     
aac(3)IIa F ATATCGCGATGCATACGCGG 877 56 aac(3)IIa (20) 
aac(3)IIa R GACGGCCTCTAACCGGAAGG     
aac(6')Ib F TTGCGATGCTCTATGAGTGGCTA 482 57 aac(6')Ib (21) 
aac(6')Ib R CTCGAATGCCTGGCGTGTTT     

 

 
Table 2. Comparison of antimicrobial susceptibility profiles of 56 ESBL-KP and 156 non ESBL-KP isolates. 

 
 

ESBL-KP (n=56) 

n (%) 

Bacterial susceptibility patterns 

Non ESBL-KP (n=156) 

n (%) 
 

Antimicrobial Agent R I S R I S p value* 
Cefepime 45 (80.1) 5 (8.9) 6 (10.6) 0 2 (1.2) 154 (98.5) p < 0.0001 
Ceftriaxone 53 (94.3) 0 (0) 3 (5.3) 5 (3.2) 1 (0.6) 150 (96) p < 0.0001 
Cefotaxime 54 (96.1) 0 (0) 2 (3.5) 7 (4.4) 2 (1.2) 147 (94) p < 0.0001 
Cefoxitin 28 (49.8) 5 (8.9) 23 (40.9) 7 (4.4) 6 (3.8) 143 (91.5) p < 0.0001 
Aztreonam 51 (90.7) 2 (3.5) 3 (5.3) 3 (1.9) 2 (1.2) 151 (96.6) p < 0.0001 
Ceftazidime 49 (87.2) 6 (10.6) 1 (1.7) 6 (3.8) 2 (1.2) 148 (94.7) p < 0.0001 
TZP 20 (35.6) 13 (23.1) 23 (40.9) 1 (0.6) 9 (5.7) 146 (93.4) p < 0.0001 
AMC 35 (62.3) 8 (14.2) 13 (23.1) 5 (3.2) 10 (6.4) 141 (90.2) p < 0.0001 
Tobramycin 34 (60.5) 19 (33.8) 3 (5.3) 4 (2.5) 8 (5.1) 144 (92.1) p < 0.0001 
Amikacin 11 (19.6) 1 (17.8) 44 (78.3) 0 (0) 1 (0.6) 155 (99.2) p < 0.0001 
Gentamicin 27 (48.2) 1 (1.7) 29 (51.6) 1 (0.6) 7 (4.4) 147 (94) p < 0.0001 

 

Note: TZP: Piperacillin-tazobactam, AMC, Aamoxicillin-clavulanic acid. *: *Fisher’s exact. 

 
BL-KP, 37 (66%) isolates were non susceptible to at 

least one aminoglycoside. 

In this study to determine the level of resistance to 

aminoglycoside, MICs of amikacin and gentamicin 

in non-susceptible isolates were determined using 

Etest (Table 3). Among isolates resistant to amika‑ 

cin, 72.7%, of isolates represented MIC≥ 256. A high 

level of resistance to gentamicin (MIC≥ 1024) was 

also seen in 18.5% of isolates. 

Detection of resistance genes. All isolates were 

confirmed as K. pneumoniae in PCR assay target‑ 

ing the  mdh (Fig. 1A). As shown in Table 3, 83.9% 

of ESBL-producing isolates harbored the genes for 

CTX-M type β-lactamases, which were distributed 

into the two genetic groups of CTX-M-1 (97.8%)- 

and CTX-M-2 (2.1%)-related enzymes (Fig. 1B). 

Among all 212 isolates, aac(3)-IIa and aac(6’)-Ib 

were found in 45 (21.2%) and 42 (19.8%) isolates, 

http://ijm.tums.ac.ir/
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Table 3. In vitro activity of aminoglycosides against 56 ESBL-producing K. pneumoniae isolates and the presence of CTX‑M 

and AME genes. 

 
ESBL AME genes Disk Diffusion MIC (µg/ml) 

 

Sample ID G/A Source CTX-M Non-CTX-M aac(3)-IIa aac(6’)-Ib TN AK GN AK ≥ 64a GN ≥ 16a 
KP-5 F/82 Urine + ‑ ‑ + R S S ‑ ‑ 
KP-9 F/62 Urine + ‑ ‑ ‑ I S S ‑ ‑ 
KP-11 F/49 Urine + ‑ + + R R R ≥256 512 
KP-12 F/80 Pleural fluid + ‑ ‑ ‑ S S S ‑ ‑ 
KP-21 F/49 Urine + ‑ + + I R R ≥256 256 
KP-28 M/22 Urine + ‑ ‑ + R S S ‑ ‑ 
KP-43 M/65 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-65 M/59 ETT + ‑ + + R S R ‑ 96 
KP-69 F/20 Urine + ‑ ‑ + R I S 24 ‑ 
KP-71 M/52 Urine + ‑ ‑ + R R R ≥256 ≥1024 
KP-75 F/17 Urine + ‑ ‑ + R S S ‑ ‑ 
KP-79 F/34 Urine + ‑ + + R S R ‑ 96 
KP-81 F/68 Urine + ‑ + + S S I ‑ 4 
KP-83 F/5 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-84 M/50 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-85 F/64 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-89 M/48 Blood + ‑ + + R S R ‑ 64 
KP-96 M/64 ETT + ‑ ‑ + R S S ‑ ‑ 
KP-97 M/52 Urine + ‑ + + R S R ‑ 48 
KP-98 F/63 ETT + ‑ ‑ ‑ S S S ‑ ‑ 
KP-100 F/56 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-101 F/58 Blood + ‑ ‑ + R S S ‑ ‑ 
KP-102 M/51 ETT + ‑ + + R S R ‑ 48 
KP-104 M/38 Blood + ‑ ‑ ‑ S S S ‑ ‑ 
KP-107 */* Urine + ‑ + + R R R 96 96 
KP-110 */* Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-116 F/36 Urine + ‑ + ‑ R S R ‑ 192 
KP-117 M/1 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-121 M/52 Wound + ‑ ‑ + R R S ≥256 ‑ 
KP-122 F/54 Shaldon + ‑ + + R S R ‑ 192 
KP-128 F/23d Urine + ‑ + + R S R ‑ 48 
KP-130 M/67 ETT + ‑ + + R S R ‑ 48 
KP-132 M/74 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-133 F/66 Urine + ‑ ‑ ‑ S S S ‑ ‑ 
KP-136 M/87 Ascites fluid + ‑ ‑ ‑ S S S ‑ ‑ 
KP-144 F/25 Urine + ‑ ‑ ‑ R R R ≥256 48 
KP-147 M/40 Urine + ‑ + + R S R ‑ 48 
KP-150 F/27 Urine + ‑ + + R S R ‑ 64 
KP-153 F/28 Urine + ‑ + + R S R ‑ ≥1024 
KP-162 M/42 Urine + ‑ + + R S R ‑ 64 
KP-165 F/41 Urine + ‑ + + R S R ‑ 64 
KP-177 F/45 Urine + ‑ + + R S R ‑ 32 
KP-184 F/17 Urine + ‑ + + R S R ‑ 48 
KP-188 M/38 Urine + ‑ + + R R R 32 128 
KP-191 M/24 Urine + ‑ + + R R R 96 96 
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CTX‑M‑1 

 

 
 

Table 3. Continuing... 

 

KP-205 F/40 Wound + ‑ + + R S R ‑ 48 
KP-206 M/53 Urine + ‑ + ‑ S S S ‑ ‑ 
KP-6 F/39 Urine ‑ + ‑ + R S S ‑ ‑ 
KP-34 F/22 Urine ‑ + ‑ ‑ S S S ‑ ‑ 
KP-73 M/38 Urine ‑ + ‑ ‑ S S S ‑ ‑ 
KP-74 F/41 Urine ‑ + ‑ ‑ S S S ‑ ‑ 
KP-91 M/49 Urine ‑ + ‑ ‑ S S S ‑ ‑ 
KP-92 M/60 Wound ‑ + ‑ + R R R ≥256 ≥1024 
KP-94 M/32 Blood ‑ + ‑ + R R R ≥256 ≥1024 
KP-106 */* Blood ‑ + ‑ + R R R ≥256 ≥1024 
KP-134 F/58 Urine ‑ + ‑ ‑ S S S ‑ ‑ 

 

Note: G: Gender, A: age, ETT: Endotracheal tube, *: Not defined, d: Days. AK: Amikacin, TN: Tobramycin, GN: Gentamicin, 

ESBL: Extended spectrum beta-lactamase, AME: Aminoglycoside-modifying enzyme, MIC: minimum inhibitory concentra‑ 

tion. a: CLSI clinical breakpoints. 

 

 

Fig. 1. A: Agarose gel electrophoresis of mdh gene (364bp) of K. pneumoniae, lanes 1-5: K. pneumoniae carrying mdh gene, 

C+: K. pneumoniae ATCC 700603, C-: Escherichia coli ATCC 25922, M: 100 bp DNA ladder. B: Agarose gel electrophoresis 

of PCR products using primers for detection bla (891 bp) and bla  
CTX‑M‑9 

(870 pb) genes. M: 100 bp DNA ladder, lane 1 

and 3: K. pneumoniae carrying bla  
CTX‑M‑1 

gene, C‑: E. coli ATCC 25922, lane 4: K. pneumoniae carrying bla  
CTX‑M‑9 

gene. C: 

Agarose gel electrophoresis of PCR products using primers for detection of aac(3)-IIa (877 bp) gene, lanes 1and 2 K. pneumo- 

niae carrying aac(3)-IIa gene, lane 4 sequenced aac(3)-IIa gene used as positive control, M: 100 bp DNA ladder. D: Agarose 

gel electrophoresis of PCR products using primers for the detection of aac(6’)-Ib (482 pb) gene, M: 100 bp DNA ladder, lane 

1 sequenced aac(6’)-Ib gene used as positive control, lanes 3 and 4 K. pneumoniae carrying aac(6’)-Ib gene. 
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respectively (Fig 1C and 1D). In ESBL-KP isolates, 

aac(3)-IIa was detected in 61.7%, 72.7% and 81.4% 

of isolates resistant to tobramycin, amikacin and 

gentamicin, respectively. In addition, 96.1%, 94.1% 

and 90.9% of ESBL-KP isolates resistant to genta‑ 

micin, tobramycin and amikacin harbored aac(6’)-Ib 

respectively (Table 4). Notably as shown in Table 3, 

the coexistence of aminoglycoside resistance genes, 

aac(3)-IIa and aac(6’)-Ib, with CTX-M was detected 

in 32 (68%) ESBL-KP isolates (p < 0.0001). 
 

 
 

DISCUSSION 

 
K. pneumoniae as a member of Enterobacteriaceae 

family is one of the main pathogens triggering nos‑ 

ocomial and community‑acquired infections. Cor‑ 

respondingly, the increasing rate of ESBL-KP has 

given rise to a serious healthcare problem in clinical 

settings in recent years. Indeed, an increased risk of 

treatment failure awaits patients infected by an ES‑ 

BL-producing organism. Even worse, the plasmid 

coding ESBL may also carry other resistance genes 

including aminoglycosides. Thus, the treatment of 

such strains may be costly, long, and hardly effective 

(22). 

The current study was done not only to evaluate the 

prevalence of ESBL-KP but also to investigate the 

in Table 2, wherein amikacin (84.1%) and cefotax‑ 

ime (42.4%) were the most and least effective antibi‑ 

otics, respectively (23). Moreover, in another similar 

study conducted in Shiraz, following ampicillin, it 

was ceftazidime which observed the most resistance 

(66.8%), and amikacin (37%) proved to be the most 

effective (24). In fact, the results of the just men‑ 

tioned study were also consistent with those of the 

current study, which represents a similar resistance 

pattern in the south of Iran. The prevalence of ES‑ 

BL-KP varies in different countries. In our study, the 

prevalence of ESBL-KP isolates was 26.4%, whereas 

that of ESBL-KP isolates in Iran ranges from 28% in 

Kerman (25) to 74% in Tehran (17). In the systematic 

study of  Bialvaei, the average of ESBL-KP isolates 

reached 45.1% from 2010 to 2018 (26). Comparing 

the prevalence of ESBL-KP isolates in Bushehr with 

other regions of Iran, it can be concluded that the 

prevalence of ESBLs in Bushehr is lower than that 

of the nation average. The prevalence of ESBL-KP 

differs in other countries, as well. For instance, Swe‑ 

den, Canada, and Spain reported the least amount of 

extended spectrum of β-Lactams with 2% (27), 3.6% 

(28), 7.2% (29), respectively, while the highest prev‑ 

alence of ESBLs has been reported in India (69.4%), 

Thailand (45.5%), and the Philippines (40%) (30). 

Over   the   past  decade,   CTX-M.15   (group   1), 

CTX-M-14 (group 9), and CTX-M-2 (group 2) have 

coexistence of the bla  
CTX‑M 

gene with AME genes, been the most prevalent CTX-M enzymes in different 

aac(3)IIa as well as aac(6′)Ib, in CTX‑M‑producing 

K. pneumoniae in clinical samples. 

It is notable that resistance to all tested antimi‑ 

crobial agents was higher in ESBL-KP than in non 

ESBL-KP isolates (p < 0.0001). Antimicrobial sus‑ 

ceptibility test results via disk diffusion of ESBL-KP 

isolates revealed amikacin as the most effective 

(78.3%), while the least effective of all tested anti‑ 

microbial agents following ampicillin (0%) were ob‑ 

served in ceftazidime (1.7%) and cefotaxime (3.5%). 

A similar study on this bacterium carried out in Ban‑ 

dar Abbas demonstrated the same findings, as shown 

European countries as well as Iran (13). Indeed, the 

present study further showed that the CTX-M1 group 

had a high (81.7%) prevalence in clinical ESBL-KP 

isolates. However, the prevalence of CTX-M1 group 

in ESBL-KP isolates varied from 7.7% in Tabriz (17) 

to 100% in Tehran (31) and Zahedan (32). Consider‑ 

ing other countries, Iraq (33) and Bahrain (34) har‑ 

bored the least prevalence by 26%, and 10%, respec‑ 

tively, while the highest prevalence has been report‑ 

ed in countries such as Kuwait 100% (35), Pakistan 

93.84% (36), and UAE 64.4% (37). 

In our study aac(3)-IIa  and aac(6’)-Ib genes re‑ 

 
Table 4. Comparison between phenotypic resistance to aminoglycosides and the presence of aminoglycoside-modifying en‑ 

zyme genes, aac(3)-IIa and aac(6’)-Ib in ESBL-KP isolates. 

 
Phenotypic Resistance Aminoglycoside-modifying enzyme genes 

 

Drug  aac(3)-IIa aac(6’)-Ib aac(3)-IIa / aac(6’)-Ib 
Tobramycin 34 (60.7%) 21 (61.7%) 32 (94.1%) 20 (58.8%) 
Amikacin 11 (19.6%) 5 (45.4%) 10 (90.9%) 5 (45.4%) 
Gentamicin 27 (48.2%) 22 (81.4%) 25 (96.1%) 21 (80.7%) 
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spectively  displayed  a  prevalence  of  21.2%  and BL-KP isolates. Unfortunately, the coexistence of 

19.8% among our isolates. Similarly, a prevalence bla  
CTX‑M 

with aac(3)-IIa and aac(6')-Ib genes among 

of 20.75% and 21.69% for aac(3)-IIa and aac(6’)- 

Ib genes has been reported by Lotfollahi et al. (38). 

In another study conducted in Tehran by Eftekhar 

et al. the prevalence of aac(6')-Ib gene was 53.16% 

(39). Finally, in another study conducted in Qazvin 

and Tehran by Nasiri et al. aac(6')-Ib and aac(3)- 

IIa genes showed a prevalence of 91.5% and 78.5%, 

which is the highest reported prevalence ever in Iran 

(40). Similarly, the most common AME gene detect‑ 

isolates probably indicates the presence of   multi 

drug resistant K. pneumoniae; therefore, making the 

treatment of these strains more difficult due to the 

limitation of effective antibiotics. Although imipen‑ 

em is an effective drug against the so-called strains, 

it should be noted that the use of imipenem increases 

the risk of resistance to carbapenems, which is the 

last line of treatment. The alarming global dissemi‑ 

nation of K. pneumoniae strains carrying AMEs and 

ed in ESBL-KP by Fernandez-Martınez in Spain was bla  
CTX‑M 

genes simultaneously emphasizes the need 

aac(6’)-Ib  (44.6%)  followed  by  aac(3)-IIa  (43.1%) 

(11). 

Associated resistance to aminoglycosides was of‑ 

ten seen among ESBL-KP. Many studies reported 

the association between the presence of CTX-M en‑ 

zymes and resistance to other antibiotics, especially 

aminoglycosides. Genes encoding AMEs can be lo‑ 

cated on integrons or transposons carried by different 

kinds of conjugative plasmids also coding for ESBLs 

or carbapenemases. Efficient mobile elements may 

have caused the acceleration of the simultaneous and 

quick spread of both ESBL and AME genes (11). 

The comparison drawn between the results of this 

current study and those of other studies conducted 

by other researchers indicates a low prevalence of 

aac(6')-Ib, and aac(3)-IIa   genes in Bushehr prov‑ 

ince. Notably, 66% of ESBL-KP isolates were resis‑ 

tant to at least one aminoglycoside. Among K. pneu- 

for a careful undertaking of aminoglycoside combi‑ 

nation therapy in the initial empirical treatment of in‑ 

fections caused by ESBL-producing K. pneumoniae. 
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