Iranian Journal of Microbiology 2017. 9(2):55-63.

Gut microbiota, epigenetic modification and colorectal cancer
Sama Rezasoltani, Hamid Asadzadeh-Aghdaei, Ehsan Nazemalhosseini-Mojarad, Hossein Dabiri, Reza Ghanbari, Mohammad Reza Zali


Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one’s profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person’s overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction.


Gut microbiota; Colorectal cancer; Epigenetic modification

Full Text:



Aziz Q, Doré J, Emmanuel A, Guarner F, Quigley EM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 2013; 25:4-15.

Lukiw WJ. Variability in microRNA (miRNA) abundance, speciation and complexity among different human populations and potential relevance to Alzheimer’s disease (AD). Front Cell Neurosci 2013; 7:133.

Maranduba CM, De Castro SB, de Souza GT, Rossato C, da Guia FC, Valente MA, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res 2015; 2015:1-14.

Zackulara JP, Baxtera NT, Iversona KD, Sadlerb WD, Petrosinoc JF, Chenb GY, Schloss PD. The gut microbiome modulates colon tumorigenesis. mBio 2013; 4:2-13.

Linghong Z, Foster JA. Psychobiotics and the gut–brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 2015; 11:715-723.

Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. Front Psychiatry 2015; 6:5.

Frye RE, Slattery J, MacFabe DF, Vercoe EA, Parker W, Rodakis J, et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis 2015; 26:26878.

Patil DP, Dhotre DP, Chavan SG, Sultan A, Jain DS, Lanjekar VB. Molecular analysis of gut microbiota in obesity among Indian individuals. J Biosci 2012; 37: 647-657.

Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A, Gut microbiota and metabolic syndrome. World J Gastroenterol 2014; 43: 16079-16094.

Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis viamodulation of inflammation and lipid metabolism. J Intern Med 2010; 268:320-328.

Hu Ch, Wong FS, Li Wen L. Type 1 diabetes and gut microbiota: Friend or foe? Pharmacol Res 2015: 98; 9-15.

Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes 2015:15; 6: 403-411.

Hofer U. Bacterial imbalance in Crohn's disease. Nature Rev. Microbiol 2014: 12312-313.

Zamani S, Zali MR, Asadzadeh Aghdaei H, Antonio Sechi L, Niegowska M, Elisa Caggiu E, et al. Mycobacterium avium subsp. paratuberculosis and associated risk factors for inflammatory bowel disease in Iranian patients. Gut Pathog 2017: 9:1.

Ganji L, Alebouyeh M, Shirazi MH, Eshraghi SS, Mirshafiey A, Ebrahimi Daryani N, et al. Dysbiosis of fecal microbiota and high frequency of Citrobacter, Klebsiella spp., and Actinomycetes in patients with irritable bowel syndrome and gastroenteritis. Gastroenterol Hepatol Bed Bench 2016; 9: 325-330.

Marchesi JR, Dutilh BE, Hall N, Peters W H, Roelofs R, Boleij A, Tjalsma H. Towards the human colorectal cancer microbiome. PLoS ONE 2011; 6:5.

Hold GL, Smith M, Grange Ch, Robert Watt E, M El-Omar E, Mukhopadhya I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J Gastroenterol 2014; 20: 1192-1210.

Llorente C, Schnabl B. The gut microbiota and liver disease. CMGH 2015; 1:275-284.

Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol 2012; 11:440-9.

Vieira1 SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. NIH 2014; 23: 518-526.

West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy 2015; 45:43-53.

Venkatesan P. Gut microbiota and the risk of childhood asthma. Lancet Respir Med 2015; 3:843.

Surjyadipta Bhattacharjee, Walter J. Lukiw, Alzheimer’s disease and the microbiome. Front Cell Neurosci 2013; 7:153.

Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet 2015; 8:187-91.

Rezasoltani S, Nazemalhosseini Mojarad E, Norouzinia M, Asadzadeh Aghdaei H. The necessity of gut microbiome characterization in diseases prevention and therapy. Gastroenterol Hepatol Bed Bench 2017; 10: 150-151.

Zhou L, Foster JA. Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 2015; 11:715-723.

Zeller G , Tap J, Voigt A Y, Sunagawa Sh, Roat Kultima J, Costea P, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014; 10: 766.

Tang WH.W, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014; 124:4204-4211.

Jobin Ch. Colorectal cancer: Looking for answers in the microbiota. NIH 2013; 3: 384-387.

Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011; 6:e16393.

Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2011; 6:320-329.

Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22:299-306.

Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22:292-298.

Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 2012; 6:1858-1868.

Chen W, Liu F, Ling Z, Tong X, Xiang C. Moschetta A. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7:e39743.

Rubinstein MR, Xiaowei W, Wendy L, Yujun H, Guifang C, Han YW. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/b-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 2013; 14, 195-206.

Sears CL, Garrett WS, Microbes, Microbiota, and colon cancer. Cell Host Microbe 2014; 15:317-328.

Yang T, Owen JL, Lightfoot YL, Kladde MP, Mohamadzadeh M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med 2013; 19:714-25.

Abdulamirn AS, Hafidh RR, Bakar FA. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer 2010; 9: 249.

Boleij A, Tjalsma H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect Dis 2013; 13:719-724.

Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroentero 2012; 142: 543-551.

Yang Y, Wang X, Huycke T, Moore DR, Lightfoot SA, Huycke MM. Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Transl Oncol 2013; 6: 596-606.

Shaoguang W, Rhee KJ, Albesiano E, Rabizadeh Sh, Xinqun W, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15:1016-1022.

Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009; 22: 349-369.

Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède, J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 2010; 10:11537-11542.

Burnett-Hartman AN, Newcomb PA, Potter JD. Infectious agents and colorectal cancer: A review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. Cancer Epidemiol Biomarkers Prev 2008; 17: 2970-2979.

Yang T, Owen JL, Lightfooot YL, Kladde MP, Mohamadzadeh M. Microbiota impact on the epigenetic regulation of colorectal Cancer. NIH 2014; Trends Mol Med 2013; 19: 714-25.

Kishani Farahani R, Hatami B, Nazemalhosseini Mojarad E. Classification of colorectal cancer based on molecular features. Gene Technol 2015; 4:e115.

Kashfi SM, Nazemalhosseini Mojarad E, Pourhoseingholi MA, Asadzadeh Aghdaei H, Anaraki F, Zali MR. Evaluation of the left-to-right shift of colon tumors in Iran: Is the trend changing? J Res Med Sci 2015; 20:978-986.

Nazemalhosseini Mojarad E, Kashfi SMH, MirtalebiH, Taleghani MY, Azimzadeh P, Savabkar S, et al. Low level of microsatellite instability correlates with poor clinical prognosis in stage II colorectal cancer patients. J Oncol 2016; 2196703.

Molaei M, Kishani Farahani RK, Maftouh M, Taleghani MY, Vahdati nia M, et al. Lack of BRAFV600E mutation in stage I and II of colorectal cancer. Gastroenterol Hepatol Bed Bench 2016; 9: 94-99.

Nazemalhosseini Mojarad E, Kashfi SM, Mirtalebi H, Almasi S, Chaleshi V, Kishani Farahani R, et al. Prognostic Significance of Nuclear β. Catenin expression in patients with colorectal cancer from Iran. Iran Red Crescent Med J 2015; 17:e22324.

Nazemalhosseini Mojarad E, Farahani RK, Haghighi MM, Aghdaei HA, Kuppen PJ, Zali MR. Clinical implications of BRAF mutation test in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013; 6:6-13.

Kashfi SM, Behboudi Farahbakhsh F, Golmohammadi M, Nazemalhosseini Mojarad E, Azimzadeh P, AsadzadehAghdaie H, Frameshift Mutations (Deletion at Codon 1309 and Codon 849) in the APC Gene in Iranian FAP Patients: a Case Series and Review of the Literature. Int J Mol Cell Med 2014;3:196-202.

Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013; 6:120-8.

Albuquerque C, Bakker ER, van Veelen W, Smits R. Colorectal cancers choosing sides. Biochim Biophys Acta 2011; 1816:219-231.

Venter JC, Adams MD, Myers EW, Li PW, Mural R J, Sutton GG, et al. The sequence of the human genome. Science 2001; 291:1304-1351.

Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36:305-312.

McVey Neufeld KA, Mao YK, Bienenstock J, Foster J A, Kunze WA. The microbiome is essential for normal gut intrinsic primary afferent neuronexcitability in the mouse. Neurogastroenterol Motil 2013; 25:183-188.

Sobhani I, Tran Van Nhieu J. Colon cancer is associated with microbial dysbiosis in humans and animals. Govaresh 2013; 18:45-56.

Molaie M, Foroughi F, Mashayekhi R, Haghazali M, Zojaji H, Jafari F, Dabiri H, Zali MR. CagA status and VacA subtypes of Helicobacter pylori in relation to histopathology findings in Iranian population. Pathol Microbiol 2010; 53: 24-27.

Barengolts E. Vitamin D and Prebiotics May Benefit the Intestinal Microbacteria and Improve Glucose Homeostasis in Prediabetes and Type 2 Diabetes. Endocr Pract 2013; 19:1-40.

Winter SE, Lopez CA, Bäumler AJ. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 2013; 14:319-327.

Yesudhas D, Gosu V, Anwar MA, Choi S. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol 2014; 15:334.

Ghanbari R, Rezasoltani S, Hashemi J, Mohamadkhani A, Tahmasebifar A, Arefian E, et al. Analysis of previously verified fecal and plasma down-regulated MicroRNAs (miR-4478,142-3p,142-3p and 26a-5p) in FFPE Tissue Samples of CRC Patients. Arch Iran Med 2016;19:92-95.

Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 19:5-29.

Ghanbari R, Mosakhani N, Sarhadi VK, Armengol G, Nouraee N, Mohammadkhani A, et al. Simultaneous under expression of let-7a-5p and let-7f-5p microRNAs in plasma and stool samples from early stage colorectal carcinoma. Cancer Biomark 2015; 7: 39-48.

Ghanbari R, Mosakhani N, Asadi J, Nouraee N, Mowls SJ, Poustchi H, et al. Decreased expression of fecal miR-4478 and miR-1295b-3p in early –stage colorectal cancer. Cancer Biomark 2015; 15:195-201.

Ghanbari R, Mosakhani N, Asadi J, Nouraee N, Mowla SJ, Yazdani Y, et al. Down regulation of plasma MiR-142-3p and MiR-26a-5p in patients with colorectal carcinoma. Iran J Cancer Prev 2015; 8(3):e2329.

Ren A, Dong Y, Tsoi H, Yu J. Detection of miRNA as non-invasive biomarkers of colorectal cancer. Int J Mol Sci 2015; 16: 2810-2823.

Zhao Y, Cui JG, Lukiw WJ. Natural secretory products of human neural and micro vessel endothelial cells: implications in pathogenic“spreading” and Alzheimer’s dis- ease. Mol Neurobiol 2006; 34: 181-192.

Reijerkerk A, Lopez-Ramirez MA, VanHetHof B, Drexhage JA, Kamphuis WW, Kooijm G, et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 2013; 17: 6857-6863.

Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013;6:120-128.

Mirchev MB, Kahl P, Friedrichs N, Kotzev IA,

Buettner R. DNA methylation in patients with colorectal cancer--correlation with some clinical and morphological features and with local tumor invasion. Folia Med (Plovdiv) 2010; 52:22-30.

Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012; 12:801-817.

Ito Y. RUNX genes in development and cancer: regulation of viral gene expression and thediscovery of RUNX family genes. Adv Cancer Res 2008; 99:33-76.

Kim JH, Rhee YY, Bae JM, Kwon HJ, Cho NY, Kim MJ. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status. Mod Pathol 2013; 26:1013-22.

Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem cell-like properties. Cell 2013; 152:25-38.

Scarpa M, ScarpM, Barzon L, Costanzi G, Lavezzo E, Finotello F, et al. Colonic microbiota and gene methylation in colonic carcinogenesis, SSAT 2014; 55th annual meeting, Chicago, IIIinois.

Scarpa M, Scarpa M, Barzon L, Erroi F, Cavallo D, Dallagnese L, et al. Mucosa-associated gut microbiota and gene methylation in colonic non-inflammatory carcinogenesis. ECMID 2013.

Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 2001; 104:817-827.

Grimm Ch, Chavez L, Vilardell M, Farrall AL, Tierling S, Böhm JW, et al. DNA-methylome analysis of mouse intestinal adenoma identifies a tumourspecificsignature that is partly conserved in human colon cancer. PLoS Genet 2013; 9:e1003250.

Kan PY, Caterino TL, Hayes JJ. The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 2009; 29:538-546.

Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 2001; 104:817-827.

Lee YM. Control of RUNX3 by histone methyltransferases. J Cell Biochem 2011; 112:394-400.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.