The Modified Hodge Test: Is it an appropriate method for detection of KPC enzyme or not?

Davood Kalantar-Neyestanaki¹*, Mehdi Fatahi Bafghi²

¹Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
²Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Received: February 2015, Accepted: March 2015

Dear Editor,

The carbapenemas production is the main mechanisms of resistance to carbapenem antibiotics in Gram-negative bacilli (1). In recent years, prevalence of Klebsiella pneumoniae Carbapenemase (BlaKPC) or KPC phenotype has been reported in Gram-negative bacteria isolated from Iranian patients using the Modified Hodge Test (MHT)(2-8). According to CLSI (Clinical Laboratory Standards Institute) and CDC (Centers for Disease Control and Prevention) guideline, MHT is being used for detection of carbapenemases in Enterobacteriaceae family and not BlaKPC, or KPC phenotype (9-11). Other carbapenemase such as Metallo-Beta-Lactamase (BlaNDM, BlaVIM and BlaIMP), Class A of carbapenemases (BlaSME), and OXA type of carbapenemases can also produce a positive results in MHT method (9-12). It should be noted, in some countries such as USA, the most common carbapenemase found in Enterobacteriaceae is BlaKPC. Therefore this test has a high sensitivity for detection of BlaKPC in this country (10,11), but in other countries, such as Greece, the most common carbapenemase found in Enterobacteriaceae is BlaVIM, so, the BlaVIM produce a positive MHT in this country (12). Considering the facts mentioned, these reports of Iran(2-8) cannot specify the presence of KPC enzymes in the isolates obtained from Iranian patients and the MHT test does not have a high sensitivity for BlaKPC identification in Iran and other countries unless it is confirmed by molecular methods. The Gram-negative bacilli such as Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii are the most important bacteria in nosocomial infection (13). To date, these bacteria are almost multidrug resistant (MDR) and show an outstanding ability to rapidly evolve resistance to newer antibiotics (14). For these isolates, therapeutic options are limited to antibacterial agents such as carbapenem (15), for these reasons, the accurate detection of carbapenemase-producing isolates is the first critical step in limiting and controlling the spread of the carbapenem resistant isolates and report of a new mechanism of resistance to antibiotics cause a serious problem on the therapeutic choices existing for treatment of infections (12,16). Therefore, attempts to reduce spread of antibiotic resistance are based on a detailed knowledge of the mechanisms of resistance (16).

Conflict of interest

All authors confirm that there are no conflicts of interest.

REFERENCES


